569 resultados para Dim Target Detection
Resumo:
This research has made contributions to the area of spoken term detection (STD), defined as the process of finding all occurrences of a specified search term in a large collection of speech segments. The use of visual information in the form of lip movements of the speaker in addition to audio and the use of topic of the speech segments, and the expected frequency of words in the target speech domain, are proposed. By using these complementary information, improvement in the performance of STD has been achieved which enables efficient search of key words in large collection of multimedia documents.
Resumo:
This paper proposes new metrics and a performance-assessment framework for vision-based weed and fruit detection and classification algorithms. In order to compare algorithms, and make a decision on which one to use fora particular application, it is necessary to take into account that the performance obtained in a series of tests is subject to uncertainty. Such characterisation of uncertainty seems not to be captured by the performance metrics currently reported in the literature. Therefore, we pose the problem as a general problem of scientific inference, which arises out of incomplete information, and propose as a metric of performance the(posterior) predictive probabilities that the algorithms will provide a correct outcome for target and background detection. We detail the framework through which these predicted probabilities can be obtained, which is Bayesian in nature. As an illustration example, we apply the framework to the assessment of performance of four algorithms that could potentially be used in the detection of capsicums (peppers).
Resumo:
Teledermatology can profoundly improve access to medical services for those who may have limited access to dermatology due to workforce shortages, distance to providers, or limitations in their mobility. Two common ways of teledermatology are differentiated: life synchronous, where patient and doctor communicate directly, or store and forward asynchronous methods, where the patient and doctor provide and assess the medical information independently. Teledermatology has been tested for its safety, feasibility and accuracy for a number of dermatological conditions, including the early detection of skin cancer and is usually safe, feasible and accurate. Studies reported somewhat better results for synchronous than asynchronous methods, possibly because of loss of information if no direct patient doctor contact is feasible. However asynchronous methods are easier to organize, require less sophisticated technology and are more widely accessible, and are more convenient for both patients and doctors. No study to date focused solely on teledermatology of actinic keratosis, but such lesions are typically found during teledermatology examinations for other main target lesions. In studies where such results were reported, actinic keratoses seemed to be readily identifiable for teledermatologists and adequate management and treatment can be suggested within remote consultations.
Resumo:
There is an increased interest on the use of Unmanned Aerial Vehicles (UAVs) for wildlife and feral animal monitoring around the world. This paper describes a novel system which uses a predictive dynamic application that places the UAV ahead of a user, with a low cost thermal camera, a small onboard computer that identifies heat signatures of a target animal from a predetermined altitude and transmits that target’s GPS coordinates. A map is generated and various data sets and graphs are displayed using a GUI designed for easy use. The paper describes the hardware and software architecture and the probabilistic model for downward facing camera for the detection of an animal. Behavioral dynamics of target movement for the design of a Kalman filter and Markov model based prediction algorithm are used to place the UAV ahead of the user. Geometrical concepts and Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of the user, thus delivering a new way point for autonomous navigation. Results show that the system is capable of autonomously locating animals from a predetermined height and generate a map showing the location of the animals ahead of the user.
Resumo:
This paper presents 'vSpeak', the first initiative taken in Pakistan for ICT enabled conversion of dynamic Sign Urdu gestures into natural language sentences. To realize this, vSpeak has adopted a novel approach for feature extraction using edge detection and image compression which gives input to the Artificial Neural Network that recognizes the gesture. This technique caters for the blurred images as well. The training and testing is currently being performed on a dataset of 200 patterns of 20 words from Sign Urdu with target accuracy of 90% and above.