36 resultados para Dihydrogen bond


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in mass spectrometry and chromatography provide new possibilities for the identification and in some instances quantification of a wide range of lipids in complex matrices. These advances in analytical technologies have provided a tantalizing glimpse of the true structural diversity of lipids in nature and have reinvigorated interest in the role of lipids in biology. While technological advances have been impressive, difficulties in the ready identification of sites of unsaturation (i.e., double bond position) within these molecules presents a significant impediment to understanding lipid biochemistry. This is of particular importance given the growing body of literature suggesting that the presence of naturally occurring lipid double bond isomers can have a significant influence, both positive and negative, on the development of pathologies such as cancer, cardiovascular disease and type 2 diabetes. This article provides a critical review of the Current suite of analytical approaches to the challenge of identification of the position of carbon-carbon double bonds in intact lipids. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extensive use of alkoxyamines in controlled radical polymerisation and polymer stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO–R3) and a stable nitroxyl radical (R1R2NO•) via homolysis of the labile O–C bond. Competing homolysis of the alkoxyamine N–O bond has been predicted to occur for some substituents leading to production of aminyl and alkoxyl radicals. This intrinsic competition between the O–C and N–O bond homolysis processes has to this point been difficult to probe experimentally. Herein we examine the effect of local molecular structure on the competition between N–O and O–C bond cleavage in the gas phase by variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of cyclic alkoxyamines with remote carboxylic acid moieties (HOOC–R1R2NO–R3) were synthesised and subjected to negative ion electrospray ionisation to yield [M – H]− anions where the charge is remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product ions resulting, almost exclusively, from homolysis of O–C and/or N–O bonds. The relative efficacy of N–O and O–C bond homolysis was examined for alkoxyamines incorporating different R3 substituents by varying the potential difference applied to the collision cell, and comparing dissociation thresholds of each product ion channel. For most R3 substituents, product ions from homolysis of the O–C bond are observed and product ions resulting from cleavage of the N–O bond are minor or absent. A limited number of examples were encountered however, where N–O homolysis is a competitive dissociation pathway because the O–C bond is stabilised by adjacent heteroatom(s) (e.g., R3 = CH2F). The dissociation threshold energies were compared for different alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. Understanding the structure-dependent relationship between these rival processes will assist in the design and selection of alkoxyamine motifs that selectively promote the desirable O–C homolysis pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Masonry bond is affected by many parameters such as the type of mortar used, the techniques of dispersion of mortar and the surface texture of the concrete blocks. Additionally it is understood from the studies on conventional masonry that the bond characteristics are also influenced by the curing methods as well as the age of the bond at the time of testing. These effects on thin layer mortared masonry employing polymer cement mortars are not well understood. Therefore, the effect of curing methods and age to the bond strength and deformation of masonry containing thin layered polymer cement mortar was investigated as part of an ongoing research program at the Queensland University of Technology. This paper presents an experimental investigation of the flexural and shear bond characteristics of the thin layer mortared concrete masonry. The parameters examined include the effects curing and ageing to the bond development over a period from 14 days to 56 days after fabrication. The results exhibit that dry cured thin layer mortared masonry exhibits higher bond strength and Young’s and shear moduli compared to the wet cured specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.