188 resultados para Diagnostic techniques and procedures
Resumo:
In Viet Nam, standards of nursing care fail to meet international competency standards. This increases risks to patient safety (eg. hospital acquired infection), consequently the Ministry of Health identified the need to strengthen nurse education in Viet Nam. This paper presents experiences of a piloted clinical teaching model developed in Ha Noi, to strengthen nurse led institutional capacity for in-service education and clinical teaching. Historically 90% of nursing education was conducted by physicians and professional development in hospitals for nurses was limited. There was minimal communication between hospitals and nursing schools about expectations of students and assessment and quality of the learning experience. As a result when students came to the clinical sites, no-one understood how to plan their learning objectives and utilise teaching and learning approaches appropriate to their level. Therefore student learning outcomes were variable. They focussed on procedures and techniques and “learning how to do” rather than learning how to plan, implement and evaluate patient care. This project is part of a multi-component capacity building program designed to improve nurse education in Viet Nam. The project was funded jointly by Queensland University of Technology (QUT) and the Australian Agency for International Development. Its aim was to develop a collaborative clinically-based model of teaching to create an environment that encourages evidence-based, student-centred clinical learning. Accordingly, strategies introduced promoted clinical teaching of competency based nursing practice utilising the regionally endorsed nurse core competency standards. Thirty nurse teachers from Viet Duc University Hospital and Hanoi Medical College participated in the program. These nurses and nurse teachers undertook face to face education in three workshops, and completed three assessment items. Assessment was applied, where participants integrated the concepts learned in each workshop and completed assessment tasks related to planning, implementing and evaluating teaching in the clinical area. Twenty of these participants were then selected to undertake a two week study tour in Brisbane, Australia where the clinical teaching model was refined and an action plan developed to integrate into both organisations with possible implementation across Viet Nam. Participants on this study tour also experienced clinical teaching and learning at QUT by attending classes held at the university, and were able to visit selected hospitals to experience clinical teaching in these settings as well. Effectiveness of the project was measured throughout the implementation phase and in follow up visits to the clinical site. To date changes have been noted on an individual and organisational level. There is also significant planning underway to incorporate the clinical teaching model developed across the organisation and how this may be implemented in other regions. Two participants have also been involved in disseminating aspects of this approach to clinical teaching in Ho Chi Minh, with further plans for more in-depth dissemination to occur throughout the country.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.
Resumo:
In the medical and healthcare arena, patients‟ data is not just their own personal history but also a valuable large dataset for finding solutions for diseases. While electronic medical records are becoming popular and are used in healthcare work places like hospitals, as well as insurance companies, and by major stakeholders such as physicians and their patients, the accessibility of such information should be dealt with in a way that preserves privacy and security. Thus, finding the best way to keep the data secure has become an important issue in the area of database security. Sensitive medical data should be encrypted in databases. There are many encryption/ decryption techniques and algorithms with regard to preserving privacy and security. Currently their performance is an important factor while the medical data is being managed in databases. Another important factor is that the stakeholders should decide more cost-effective ways to reduce the total cost of ownership. As an alternative, DAS (Data as Service) is a popular outsourcing model to satisfy the cost-effectiveness but it takes a consideration that the encryption/ decryption modules needs to be handled by trustworthy stakeholders. This research project is focusing on the query response times in a DAS model (AES-DAS) and analyses the comparison between the outsourcing model and the in-house model which incorporates Microsoft built-in encryption scheme in a SQL Server. This research project includes building a prototype of medical database schemas. There are 2 types of simulations to carry out the project. The first stage includes 6 databases in order to carry out simulations to measure the performance between plain-text, Microsoft built-in encryption and AES-DAS (Data as Service). Particularly, the AES-DAS incorporates implementations of symmetric key encryption such as AES (Advanced Encryption Standard) and a Bucket indexing processor using Bloom filter. The results are categorised such as character type, numeric type, range queries, range queries using Bucket Index and aggregate queries. The second stage takes the scalability test from 5K to 2560K records. The main result of these simulations is that particularly as an outsourcing model, AES-DAS using the Bucket index shows around 3.32 times faster than a normal AES-DAS under the 70 partitions and 10K record-sized databases. Retrieving Numeric typed data takes shorter time than Character typed data in AES-DAS. The aggregation query response time in AES-DAS is not as consistent as that in MS built-in encryption scheme. The scalability test shows that the DBMS reaches in a certain threshold; the query response time becomes rapidly slower. However, there is more to investigate in order to bring about other outcomes and to construct a secured EMR (Electronic Medical Record) more efficiently from these simulations.
Resumo:
Orthopaedics and Trauma Queensland, a Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that is developing into an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering, and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.
Resumo:
Orthopaedics and Trauma Queensland, the Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that continues to develop its reputation as an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients. The group undertakes clinical practice in orthopaedics and trauma and applies core engineering skills to challenges in medicine. The research is built on a strong foundation of knowledge in biomedical engineering, and incorporates expertise in cell biology, mathematical modelling, human anatomy and physiology and clinical medicine in orthopaedics and trauma. New knowledge is being developed and applied to the full range of orthopaedic diseases and injuries, such as knee and hip replacements, fractures and spinal deformities.
Resumo:
The follicular variant of papillary thyroid carcinoma (FVPTC) presents a type of papillary thyroid cancer that has created continuous diagnosis and treatment controversies among clinicians and pathologists. In this review, we describe the nomenclature, the clinical features, diagnostic problems and the molecular biology of FVPTC. It is important for clinicians to understand this entity as the diagnosis and management of this group of patient may be different from other patients with conventional PTC. The literature suggests that FVPTC behaves in a way similar, clinically, to conventional papillary thyroid carcinoma. However, there are some genotypic differences which may characterise this neoplasm. These parameters may account for the phenotypic variation described by some scientists in this type of cancer. Further understanding can only be achieved by defining strict pathological criteria, in-depth study of the molecular biology and long term follow-up of the optional patients with FVPTC.
Resumo:
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Resumo:
Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.
Resumo:
Orthopaedics and Trauma Queensland, the Centre for Research and Education in Musculoskeletal Disorders, is an internationally recognised research group that continues to develop its reputation as an international leader in research and education. It provides a stimulus for research, education and clinical application within the international orthopaedic and trauma communities. Orthopaedics and Trauma Queensland develops and promotes the innovative use of engineering and technology, in collaboration with surgeons, to provide new techniques, materials, procedures and medical devices. Its integration with clinical practice and strong links with hospitals ensure that the research will be translated into practical outcomes for patients.
Resumo:
This thesis examines and compares imaging methods used during the radiotherapy treatment of prostate cancer. The studies found that radiation therapists were able to localise and target the prostate consistently with planar imaging techniques and that the use of small gold markers in the prostate reduced the variation in prostate localisation when using volumetric imaging. It was concluded that larger safety margins are required when using volumetric imaging without gold markers.
Resumo:
Heart failure (HF) affects approximately 23 million individuals worldwide and this number is increasing, due to an aging and growing population. Early detection of HF is crucial in the management of this debilitating disease. Current diagnostic methods for HF rely heavily on clinical imaging techniques and blood analysis, which makes them less than ideal for population-based screening purposes. Studies focusing on developing novel biomarkers for HF have utilized various techniques and biological fluids, including urine and saliva. Promising results from these studies imply that these body fluids can be used in evaluating the clinical manifestation of HF and will one day be integrated into a clinical workflow and facilitate HF management.
Resumo:
Sonographic diagnosis of appendicitis in children is an important clinical tool, often obviating the need for potentially harmful ionising radiation from computed tomography (CT) scans and unnecessary appendectomies. Established criteria do not commonly account for the sonographic secondary signs of acute appendicitis as an adjunct or corollary to an identifiably inflamed appendix. If one of, or combinations of these secondary signs are a reliable positive and/or negative indicator of the condition, diagnostic accuracy may be improved. This will be of particular importance in cases where the appendix cannot be easily identified, possibly providing referring clinicians with a less equivocal diagnosis. Acute appendicitis (AA) is the most common emergency presentation requiring surgical intervention among both adults and children. During 2010-11 in Australia 25000 appendicectomies were performed on adults and children, more than double the number of the next most common surgical procedure [1]. Ultrasound has been commonly used to diagnose AA since the 1980s, however the best imaging modality or combination of modalities to accurately and cost-effectively diagnose the condition is still debated. A study by Puylaert advocated ultrasound in all presentations [2], whereas others suggested it only as a first line modality [3–5]. Conversely, York et al state that it is not appropriate as it delays treatment [6]. CT has been shown to more accurately diagnose AA than ultrasound, however its inherent radiation risks warrant cautionary use in children [7]. Improved accuracy in the diagnosis of suspected AA using ultrasound would enable surgeons to make a decision without the need to expose children to the potentially harmful effects of CT. Secondary signs of appendicitis are well established [8], although research into their predictive values has only recently been undertaken [9,10] indicating their potential diagnostic benefit in the absence of an identifiable appendix. The purpose of this review is to examine the history of appendiceal sonography, established sonographic criteria, paediatric specific techniques and the predictive value of secondary signs.
Resumo:
Hydraulic instabilities represent a critical problem for Francis and Kaplan turbines, reducing their useful life due to increase of fatigue on the components and cavitation phenomena. Whereas an exhaustive list of publications on computational fluid-dynamic models of hydraulic instability is available, the possibility of applying diagnostic techniques based on vibration measurements has not been investigated sufficiently, also because the appropriate sensors seldom equip hydro turbine units. The aim of this study is to fill this knowledge gap and to exploit fully, for this purpose, the potentiality of combining cyclostationary analysis tools, able to describe complex dynamics such as those of fluid-structure interactions, with order tracking procedures, allowing domain transformations and consequently the separation of synchronous and non-synchronous components. This paper will focus on experimental data obtained on a full-scale Kaplan turbine unit, operating in a real power plant, tackling the issues of adapting such diagnostic tools for the analysis of hydraulic instabilities and proposing techniques and methodologies for a highly automated condition monitoring system. © 2015 Elsevier Ltd.
Resumo:
The historical challenge of environmental impact assessment (EIA) has been to predict project-based impacts accurately. Both EIA legislation and the practice of EIA have evolved over the last three decades in Canada, and the development of the discipline and science of environmental assessment has improved how we apply environmental assessment to complex projects. The practice of environmental assessment integrates the social and natural sciences and relies on an eclectic knowledge base from a wide range of sources. EIA methods and tools provide a means to structure and integrate knowledge in order to evaluate and predict environmental impacts.----- This Chapter will provide a brief overview of how impacts are identified and predicted. How do we determine what aspect of the natural and social environment will be affected when a mine is excavated? How does the practitioner determine the range of potential impacts, assess whether they are significant, and predict the consequences? There are no standard answers to these questions, but there are established methods to provide a foundation for scoping and predicting the potential impacts of a project.----- Of course, the community and publics play an important role in this process, and this will be discussed in subsequent chapters. In the first part of this chapter, we will deal with impact identification, which involves appplying scoping to critical issues and determining impact significance, baseline ecosystem evaluation techniques, and how to communicate environmental impacts. In the second part of the chapter, we discuss the prediction of impacts in relation to the complexity of the environment, ecological risk assessment, and modelling.