74 resultados para Deformation styles
Resumo:
This paper discusses users’ query reformulation behaviour while searching information on the Web. Query reformulations have emerged as an important component of Web search behaviour and human-computer interaction (HCI) because a user’s success of information retrieval (IR) depends on how he or she formulates queries. There are various factors, such as cognitive styles, that influence users’ query reformulation behaviour. Understanding how users with different cognitive styles formulate their queries while performing Web searches can help HCI researchers and information systems (IS) developers to provide assistance to the users. This paper aims to examine the effects of users’ cognitive styles on their query reformation behaviour. To achieve the goal of the study, a user study was conducted in which a total of 3613 search terms and 872 search queries were submitted by 50 users who engaged in 150 scenario-based search tasks. Riding’s (1991) Cognitive Style Analysis (CSA) test was used to assess users’ cognitive style as wholist or analytic, and verbaliser or imager. The study findings show that users’ query reformulation behaviour is affected by their cognitive styles. The results reveal that analytic users tended to prefer Add queries while all other users preferred New queries. A significant difference was found among wholists and analytics in the manner they performed Remove query reformulations. Future HCI researchers and IS developers can utilize the study results to develop interactive and user-cantered search model, and to provide context-based query suggestions for users.
Resumo:
The Sudbury Basin is a non-cylindrical fold basin occupying the central portion of the Sudbury Impact Structure. The impact structure lends itself excellently to explore the structural evolution of continental crust containing a circular region of long-term weakness. In a series of scaled analogue experiments various model crustal configurations were shortened horizontally at a constant rate. In mechanically weakened crust, model basins formed that mimic several first-order structural characteristics of the Sudbury Basin: (1) asymmetric, non-cylindrical folding of the Basin, (2) structures indicating concentric shortening around lateral basin termini and (3) the presence of a zone of strain concentration near the hinge zones of model basins. Geometrically and kinematically this zone corresponds to the South Range Shear Zone of the Sudbury Basin. According to our experiments, this shear zone is a direct mechanical consequence of basin formation, rather than the result of thrusting following folding. Overall, the models highlight the structurally anomalous character of the Sudbury Basin within the Paleoproterozoic Eastern Penokean Orogen. In particular, our models suggest that the Basin formed by pure shear thickening of crust, whereas transpressive deformation prevailed elsewhere in the orogen. The model basin is deformed by thickening and non-cylindrical synformal buckling, while conjugate transpressive shear zones propagated away from its lateral tips. This is consistent with pure shear deformation of a weak circular inclusion in a strong matrix. The models suggest that the Sudbury Basin formed as a consequence of long-term weakening of the upper crust by meteorite impact.
Resumo:
The cause of upper-crustal segmentation into rhomb-shaped, shear zone-bound domains associated with contractional sedimentary basins in hot, wide orogens is not well understood. Here we use scaled multilayered analogue experiments to investigate the role of an orogen-parallel crustal-strength gradient on the formation of such structures. We show that the aspect ratio and size of domains, the sinuous character and abundance of transpressional shear zones vary with the integrated mechanical strength of crust. Upper-crustal deformation patterns and the degree of strain localization in the experiments are controlled by the ratio between the brittle and ductile strength in the model crust as well as gradients in tectonic and buoyancy forces. The experimental results match the first-order kinematic and structural characteristics of the southern Central Andes and provide insight on the dynamics of underlying deformation patterns in hot, wide orogens.
Resumo:
A numerical simulation method for the Red Blood Cells’ (RBC) deformation is presented in this study. The two-dimensional RBC membrane is modeled by the spring network, where the elastic stretch/compression energy and the bending energy are considered with the constraint of constant RBC surface area. Smoothed Particle Hydrodynamics (SPH) method is used to solve the Navier-Stokes equation coupled with the Plasma-RBC membrane and Cytoplasm- RBC membrane interaction. To verify the method, the motion of a single RBC is simulated in Poiseuille flow and compared with the results reported earlier. Typical motion and deformation mechanism of the RBC is observed.
Resumo:
Reasoning with uncertain knowledge and belief has long been recognized as an important research issue in Artificial Intelligence (AI). Several methodologies have been proposed in the past, including knowledge-based systems, fuzzy sets, and probability theory. The probabilistic approach became popular mainly due to a knowledge representation framework called Bayesian networks. Bayesian networks have earned reputation of being powerful tools for modeling complex problem involving uncertain knowledge. Uncertain knowledge exists in domains such as medicine, law, geographical information systems and design as it is difficult to retrieve all knowledge and experience from experts. In design domain, experts believe that design style is an intangible concept and that its knowledge is difficult to be presented in a formal way. The aim of the research is to find ways to represent design style knowledge in Bayesian net works. We showed that these networks can be used for diagnosis (inferences) and classification of design style. The furniture design style is selected as an example domain, however the method can be used for any other domain.
Resumo:
Plastic deformation behavior of Cu/Ni/Wmetallicmultilayers with individual layer thickness ranging from 5 nm to 300 nm is investigated by nanoindentation testing. The experimental results reveal that the composite still exhibits indentation-induced plastic deformation instability and the loss of strain hardening ability at the nanometer scale even if the composite contains two kinds of layer interfaces (face centered cubic(FCC)/FCC and FCC/ body centered cubic) simultaneously. Plastic deformation behavior of the nanolayered material was evaluated and analyzed.
Resumo:
The deformation behaviour of Mg-5%AI alloys and its dependence with gain size and strain rate were investigated using nanoindentation. The grain sizes were successfully reduced below 100 nm via mechanical alloying method. It was found that the strain rate sensitivity increased with decreasing grain size. The smaller activation volumes and the plastic deformation mechanisms involving grain boundary activities are considered to contribute to the increase of strain rate sensitivity in the nanocrystalline alloys.
Resumo:
The Gulf of California (GoC) has been an important focus site for understanding the spatial and temporal evolution of rifts, with recent studies concluding: 1) rapid crustal rupturing within 10 Myrs; 2) surprisingly abrupt variations in rifting style and magmatism with apparently wide magma-poor and narrow, magmatic rift segments; and 3) that high sedimentation rates may promote switching from wide to narrow rift modes or thermally blanket the crust to enhance rift magmatism. Critical to these conclusions is the onset of rifting at~12 Ma following the cessation of subduction. New field-based volcanostratigraphic and geochronologic studies along the southeastern GoC margin reveal Early Miocene (~25-18 Ma) bimodal volcanism in wide rifting mode (~400 km width), followed by a mid-Miocene (~18-12 Ma) phase of dominantly intermediate composition magmatism in and around the nascent GoC with lavas/domes often emplaced into actively subsiding basins, but contemporaneous with bimodal volcanism regionally. Flat-lying intraplate basaltic lava fields emplaced ~12-10 Ma along the GoC east coast abut tilted blocks of ~20 Ma ignimbrites onshore, and also occur offshore. The reduction in crustal thickness from ~55 to 20 km along the eastern GoC edge must have been largely achieved by 12 Ma. Extension has demonstrably began earlier than previously thought, downplaying rapid rifting and any thermal effects from <6 Ma sedimentation. New age data from onshore indicate significant structurally controlled corridors of magmatism during 18-12 Ma extension in apparently magma-poor rift segments, and this magmatism temporally coincides with the switch from wide to narrow rifting.
Resumo:
The deformation of rocks is commonly intimately associated with metamorphic reactions. This paper is a step towards understanding the behaviour of fully coupled, deforming, chemically reacting systems by considering a simple example of the problem comprising a single layer system with elastic-power law viscous constitutive behaviour where the deformation is controlled by the diffusion of a single chemical component that is produced during a metamorphic reaction. Analysis of the problem using the principles of non-equilibrium thermodynamics allows the energy dissipated by the chemical reaction-diffusion processes to be coupled with the energy dissipated during deformation of the layers. This leads to strain-rate softening behaviour and the resultant development of localised deformation which in turn nucleates buckles in the layer. All such diffusion processes, in leading to Herring-Nabarro, Coble or “pressure solution” behaviour, are capable of producing mechanical weakening through the development of a “chemical viscosity”, with the potential for instability in the deformation. For geologically realistic strain rates these chemical feed-back instabilities occur at the centimetre to micron scales, and so produce structures at these scales, as opposed to thermal feed-back instabilities that become important at the 100–1000 m scales.
Resumo:
Pedagogical styles, methods, models, practices or strategies are valued for what they claim they can achieve. In recent times curriculum documents and governments have called for a range of teaching approaches to meet the variety of learner differences and allow students to make more independent decision making in physical education (Hardy and Mawer, 1999). One well known system of categorizing teaching styles is the Mosston and Ashworth’s Spectrum of Teaching Styles (2002). In Queensland, prior to 2005, no research had been conducted on the teaching styles used by teachers of Physical Education. However, many teachers self-reported that they employed a variety of teaching styles depending on the aims and content of the material to be taught (Cothran, et al., 2005). This research, for the first time, collected teacher’s self-reported use of teaching styles and through observations verify the styles that were being used to teach Senior Physical Education in Queensland. More specifically the aims of the research were to determine: a) What teaching styles teachers of Senior Physical Education in Queensland believe they use? i) Were they using a range of teaching styles? ii) Were teachers of Senior Physical Education in Queensland using teaching styles that the Queensland Senior Physical Education Syllabus (2004) required? b) If Mosston and Ashworth’s (2002) Spectrum of Teaching Styles were used to categorise styles observed during the teaching of Senior Physical Education did the styles being used provide opportunities for evaluating as described by the Queensland Senior Physical Education Syllabus (2004)? The research was conducted in two phases. Part A involved use of a questionnaire to determine the teaching styles Queensland teachers of Senior Physical Education reported using and how often they reported using them. The questionnaire was administered to 110 teachers throughout Queensland. The sample was determined from 346 schools teaching Senior Physical Education (in 2006) across the state of Queensland, Australia. 286 questionnaires were sent to 77 non-randomised schools. There were 66 male and 44 female respondents in the sample. A wide range of teaching styles were reportedly used by teachers of Senior Physical Education with Practice Style-Style B, Command Style-Style A and Divergent Discovery Style-Style H, the most reportedly used. The Self-Teaching Style-Style K was reportedly used the least by teachers involved in this study. From the respondents a group of teachers were identified to form the participants for Part B. Part B of the study involved observation of a group of volunteer participants (from those who had completed the questionnaire) who displayed many of the ‘typical’ characteristics, and a cross-section of backgrounds, of teachers of Senior Physical Education in Queensland. In the case of this study, the criteria used to select the group of teachers to be observed teaching were, teaching experience (number of years: 0-4, 5-10 and 11 years and over), gender, geographical location of schools (focused on Brisbane and near area for travel/access purposes), profile of the students at schools (girls, boys or co-educational), nature of school (Government or Private) and the physical activities being taught in a school (activities to reflect all the areas of physical activity outlined within the syllabus). A total of 27 questionnaire respondents from Part A indicated that they were willing to be observed teaching practical lessons. The respondents who volunteered to be involved in Part B of the study came from different regions across the state of Queensland and was not confined to the Brisbane metropolitan area or large cities. From the group of people who volunteered for Part B four came from outside Brisbane and 23 from the Brisbane area. The final observation group of nine participants included eight teachers from the Brisbane area and one from a rural area. The characteristics of the final group included three females and six males from private and public schools with a range of teaching experience in years and a range of physical activities. Four year 12 and five year 11 teachers and their classes were videoed on three occasions as they progressed through an eight – nine week unit of work. This resulted in 24 hours 48 minutes and 20 seconds (or 4465 observations) of video teaching data which was subsequently coded by several researchers (99% interobserver reliability) to determine the teaching styles employed by the participants. This research indicated that, based on Mosston and Ashworth’s (2002) Spectrum of Teaching Styles, teachers of Senior Physical Education in Queensland used predominantly one style to teach 27 observed lessons. This is in sharp contrast to the variety of styles 110 teachers self- reportedly used and in spite of the Queensland Senior Physical Education Syllabus (2004) suggesting a range of specific styles be used. These results are discussed in the context of the Queensland Senior Physical Education Syllabus (2004), teacher knowledge of teaching styles and high-stakes curriculum and external pressures such as national testing and the publication of data from schools in tabloid newspapers. The data and findings in this research provide a rationale for improving teacher knowledge regarding teaching styles and the need for a clear definition of terminology in syllabus documents. Careful examination of the effects that the publishing of school data may have on teaching styles is advised. This research not only collected teacher’s perceptions of the teaching styles they believed they used it also verified these claims through direct observations of the teachers while teaching. These findings are relevant to syllabus writers, teacher educators, policy makers within education and teachers.
Resumo:
With a monolayer honeycomb-lattice of sp2-hybridized carbon atoms, graphene has demonstrated exceptional electrical, mechanical and thermal properties. One of its promising applications is to create graphene-polymer nanocomposites with tailored mechanical and physical properties. In general, the mechanical properties of graphene nanofiller as well as graphene-polymer interface govern the overall mechanical performance of graphene-polymer nanocomposites. However, the strengthening and toughening mechanisms in these novel nanocomposites have not been well understood. In this work, the deformation and failure of graphene sheet and graphene-polymer interface were investigated using molecular dynamics (MD) simulations. The effect of structural defects on the mechanical properties of graphene and graphene-polymer interface was investigated as well. The results showed that structural defects in graphene (e.g. Stone-Wales defect and multi-vacancy defect) can significantly deteriorate the fracture strength of graphene but may still make full utilization of corresponding strength of graphene and keep the interfacial strength and the overall mechanical performance of graphene-polymer nanocomposites.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Currently, finite element analyses are usually done by means of commercial software tools. Accuracy of analysis and computational time are two important factors in efficiency of these tools. This paper studies the effective parameters in computational time and accuracy of finite element analyses performed by ANSYS and provides the guidelines for the users of this software whenever they us this software for study on deformation of orthopedic bone plates or study on similar cases. It is not a fundamental scientific study and only shares the findings of the authors about structural analysis by means of ANSYS workbench. It gives an idea to the readers about improving the performance of the software and avoiding the traps. The solutions provided in this paper are not the only possible solutions of the problems and in similar cases there are other solutions which are not given in this paper. The parameters of solution method, material model, geometric model, mesh configuration, number of the analysis steps, program controlled parameters and computer settings are discussed through thoroughly in this paper.