347 resultados para Debugging in computer science.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
In spite of having a long history in education, inquiry teaching (the teaching in ways that foster inquiry based learning in students) in science education is still a highly problematic issue. However, before teacher educators can hope to effectively influence teacher implementation of inquiry teaching in the science classroom, educators need to understand teachers’ current conceptions of inquiry teaching. This study describes the qualitatively different ways in which 20 primary school teachers experienced inquiry teaching in science education. A phenomenographic approach was adopted and data sourced from interviews of these teachers. The three categories of experiences that emerged from this study were; Student Centred Experiences (Category 1), Teacher Generated Problems (Category 2), and Student Generated Questions (Category 3). In Category 1 teachers structure their teaching around students sensory experiences, expecting that students will see, hear, feel and do interesting things that will focus their attention, have them asking science questions, and improve their engagement in learning. In Category 2 teachers structure their teaching around a given problem they have designed and that the students are required to solve. In Category 3 teachers structure their teaching around helping students to ask and answer their own questions about phenomena. These categories describe a hierarchy with the Student Generated Questions Category as the most inclusive. These categories were contrasted with contemporary educational theory, and it was found that when given the chance to voice their own conceptions without such comparison teachers speak of inquiry teaching in only one of the three categories mentioned. These results also help inform our theoretical understanding of teacher conceptions of inquiry teaching. Knowing what teachers actually experience as inquiry teaching, as opposed to understand theoretically, is a valuable contribution to the literature. This knowledge provides a valuable contribution to educational theory, which helps policy, curriculum development, and the practicing primary school teachers to more fully understand and implement the best educative practices in their daily work. Having teachers experience the qualitatively different ways of experiencing inquiry teaching uncovered in this study is expected to help teachers to move towards a more student-centred, authentic inquiry outcome for their students and themselves. Going beyond this to challenge teacher epistemological beliefs regarding the source of knowledge may also assist them in developing more informed notions of the nature of science and of scientific inquiry during professional development opportunities. The development of scientific literacy in students, a high priority for governments worldwide, will only to benefit from these initiatives.
Resumo:
We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.
Resumo:
This study explores the development of a coding system for analysing test questions in two context-based chemistry exams. We describe our unique analytical procedures before contrasting the data from both tests. Our findings indicate that when a new curriculum is developed such as a context-based curriculum, teachers are required to combine the previously separate domains of context and concept to develop contextualised assessment. We argue that constructing contextualised assessment items requires teachers to view concepts and context as interconnected rather than as separate entities that may polarise scientific endeavour. Implications for practice, curriculum and assessment-development in context-based courses are proposed.
Resumo:
Most one-round key exchange protocols provide only weak forward secrecy at best. Furthermore, one-round protocols with strong forward secrecy often break badly when faced with an adversary who can obtain ephemeral keys. We provide a characterisation of how strong forward secrecy can be achieved in one-round key exchange. Moreover, we show that protocols exist which provide strong forward secrecy and remain secure with weak forward secrecy even when the adversary is allowed to obtain ephemeral keys. We provide a compiler to achieve this for any existing secure protocol with weak forward secrecy.
Resumo:
To provide privacy protection, cryptographic primitives are frequently applied to communication protocols in an open environment (e.g. the Internet). We call these protocols privacy enhancing protocols (PEPs) which constitute a class of cryptographic protocols. Proof of the security properties, in terms of the privacy compliance, of PEPs is desirable before they can be deployed. However, the traditional provable security approach, though well-established for proving the security of cryptographic primitives, is not applicable to PEPs. We apply the formal language of Coloured Petri Nets (CPNs) to construct an executable specification of a representative PEP, namely the Private Information Escrow Bound to Multiple Conditions Protocol (PIEMCP). Formal semantics of the CPN specification allow us to reason about various privacy properties of PIEMCP using state space analysis techniques. This investigation provides insights into the modelling and analysis of PEPs in general, and demonstrates the benefit of applying a CPN-based formal approach to the privacy compliance verification of PEPs.
Resumo:
Prevailing video adaptation solutions change the quality of the video uniformly throughout the whole frame in the bitrate adjustment process; while region-of-interest (ROI)-based solutions selectively retains the quality in the areas of the frame where the viewers are more likely to pay more attention to. ROI-based coding can improve perceptual quality and viewer satisfaction while trading off some bandwidth. However, there has been no comprehensive study to measure the bitrate vs. perceptual quality trade-off so far. The paper proposes an ROI detection scheme for videos, which is characterized with low computational complexity and robustness, and measures the bitrate vs. quality trade-off for ROI-based encoding using a state-of-the-art H.264/AVC encoder to justify the viability of this type of encoding method. The results from the subjective quality test reveal that ROI-based encoding achieves a significant perceptual quality improvement over the encoding with uniform quality at the cost of slightly more bits. Based on the bitrate measurements and subjective quality assessments, the bitrate and the perceptual quality estimation models for non-scalable ROI-based video coding (AVC) are developed, which are found to be similar to the models for scalable video coding (SVC).
Resumo:
Purpose: Investigations of foveal aberrations assume circular pupils. However, the pupil becomes increasingly elliptical with increase in visual field eccentricity. We address this and other issues concerning peripheral aberration specification. Methods: One approach uses an elliptical pupil similar to the actual pupil shape, stretched along its minor axis to become a circle so that Zernike circular aberration polynomials may be used. Another approach uses a circular pupil whose diameter matches either the larger or smaller dimension of the elliptical pupil. Pictorial presentation of aberrations, influence of wavelength on aberrations, sign differences between aberrations for fellow eyes, and referencing position to either the visual field or the retina are considered. Results: Examples show differences between the two approaches. Each has its advantages and disadvantages, but there are ways to compensate for most disadvantages. Two representations of data are pupil aberration maps at each position in the visual field and maps showing the variation in individual aberration coefficients across the field. Conclusions: Based on simplicity of use, adequacy of approximation, possible departures of off-axis pupils from ellipticity, and ease of understanding by clinicians, the circular pupil approach is preferable to the stretched elliptical approach for studies involving field angles up to 30 deg.
Resumo:
Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.
Resumo:
Design Science Research (DSR) has emerged as an important approach in Information Systems (IS) research, evidenced by the plethora of recent related articles in recognized IS outlets. Nonetheless, discussion continues on the value of DSR for IS and how to conduct strong DSR, with further discussion necessary to better position DSR as a mature and stable research paradigm appropriate for IS. This paper contributes to address this need, by providing a comprehensive conceptual and argumentative positioning of DSR relative to the core of IS. This paper seeks to argue the relevance of DSR as a paradigm that addresses the core of IS discipline well. Here we use the framework defined by Wand and Weber, to position what the core of IS is.