413 resultados para Data validation
Resumo:
Introduction: The Trendelenburg Test (TT) is used to assess the functional strength of the hip abductor muscles (HABD), their ability to control frontal plane motion of the pelvis, and the ability of the lumbopelvic complex to transfer load into single leg stance. Rationale: Although a standard method to perform the test has been described for use within clinical populations, no study has directly investigated Trendelenburg’s hypotheses. Purpose: To investigate the validity of the TT using an ultrasound guided nerve block (UNB) of the superior gluteal nerve and determine whether the reduction in HABD strength would result in the theorized mechanical compensatory strategies measured during the TT. Methods: Quasi-experimental design using a convenience sample of nine healthy males. Only subjects with no current or previous injury to the lumbar spine, pelvis, or lower extremities, and no previous surgeries were included. Force dynamometry was used to evaluation HABD strength (%BW). 2D mechanics were used to evaluate contralateral pelvic drop (cMPD), change in contralateral pelvic drop (∆cMPD), ipsilateral hip adduction (iHADD) and ipsilateral trunk sway (TRUNK) measured in degrees (°). All measures were collected prior to and following a UNB on the superior gluteal nerve performed by an interventional radiologist. Results: Subjects’ age was median 31yrs (IQR:22-32yrs); and weight was median 73kg (IQR:67-81kg). An average 52% reduction of HABD strength (z=2.36,p=0.02) resulted following the UNB. No differences were found in cMPD or ∆cMPD (z=0.01,p= 0.99, z=-0.67,p=0.49). Individual changes in biomechanics show no consistency between subjects and non-systematic changes across the group. One subject demonstrated the mechanical compensations described by Trendelenburg. Discussion: The TT should not be used as screening measure for HABD strength in populations demonstrating strength greater than 30%BW but reserved for use with populations with marked HABD weakness. Importance: This study presents data regarding a critical level of HABD strength required to support the pelvis during the TT.
Resumo:
Ambiguity resolution plays a crucial role in real time kinematic GNSS positioning which gives centimetre precision positioning results if all the ambiguities in each epoch are correctly fixed to integers. However, the incorrectly fixed ambiguities can result in large positioning offset up to several meters without notice. Hence, ambiguity validation is essential to control the ambiguity resolution quality. Currently, the most popular ambiguity validation is ratio test. The criterion of ratio test is often empirically determined. Empirically determined criterion can be dangerous, because a fixed criterion cannot fit all scenarios and does not directly control the ambiguity resolution risk. In practice, depending on the underlying model strength, the ratio test criterion can be too conservative for some model and becomes too risky for others. A more rational test method is to determine the criterion according to the underlying model and user requirement. Miss-detected incorrect integers will lead to a hazardous result, which should be strictly controlled. In ambiguity resolution miss-detected rate is often known as failure rate. In this paper, a fixed failure rate ratio test method is presented and applied in analysis of GPS and Compass positioning scenarios. A fixed failure rate approach is derived from the integer aperture estimation theory, which is theoretically rigorous. The criteria table for ratio test is computed based on extensive data simulations in the approach. The real-time users can determine the ratio test criterion by looking up the criteria table. This method has been applied in medium distance GPS ambiguity resolution but multi-constellation and high dimensional scenarios haven't been discussed so far. In this paper, a general ambiguity validation model is derived based on hypothesis test theory, and fixed failure rate approach is introduced, especially the relationship between ratio test threshold and failure rate is examined. In the last, Factors that influence fixed failure rate approach ratio test threshold is discussed according to extensive data simulation. The result shows that fixed failure rate approach is a more reasonable ambiguity validation method with proper stochastic model.
Resumo:
Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
Travel time prediction has long been the topic of transportation research. But most relevant prediction models in the literature are limited to motorways. Travel time prediction on arterial networks is challenging due to involving traffic signals and significant variability of individual vehicle travel time. The limited availability of traffic data from arterial networks makes travel time prediction even more challenging. Recently, there has been significant interest of exploiting Bluetooth data for travel time estimation. This research analysed the real travel time data collected by the Brisbane City Council using the Bluetooth technology on arterials. Databases, including experienced average daily travel time are created and classified for approximately 8 months. Thereafter, based on data characteristics, Seasonal Auto Regressive Integrated Moving Average (SARIMA) modelling is applied on the database for short-term travel time prediction. The SARMIA model not only takes the previous continuous lags into account, but also uses the values from the same time of previous days for travel time prediction. This is carried out by defining a seasonality coefficient which improves the accuracy of travel time prediction in linear models. The accuracy, robustness and transferability of the model are evaluated through comparing the real and predicted values on three sites within Brisbane network. The results contain the detailed validation for different prediction horizons (5 min to 90 minutes). The model performance is evaluated mainly on congested periods and compared to the naive technique of considering the historical average.
Resumo:
Background The incidence of malignant mesothelioma is increasing. There is the perception that survival is worse in the UK than in other countries. However, it is important to compare survival in different series based on accurate prognostic data. The European Organisation for Research and Treatment of Cancer (EORTC) and the Cancer and Leukaemia Group B (CALGB) have recently published prognostic scoring systems. We have assessed the prognostic variables, validated the EORTC and CALGB prognostic groups, and evaluated survival in a series of 142 patients. Methods Case notes of 142 consecutive patients presenting in Leicester since 1988 were reviewed. Univariate analysis of prognostic variables was performed using a Cox proportional hazards regression model. Statistically significant variables were analysed further in a forward, stepwise multivariate model. EORTC and CALGB prognostic groups were derived, Kaplan-Meier survival curves plotted, and survival rates were calculated from life tables. Results Significant poor prognostic factors in univariate analysis included male sex, older age, weight loss, chest pain, poor performance status, low haemoglobin, leukocytosis, thrombocytosis, and non-epithelial cell type (p<0.05). The prognostic significance of cell type, haemoglobin, white cell count, performance status, and sex were retained in the multivariate model. Overall median survival was 5.9 (range 0-34.3) months. One and two year survival rates were 21.3% (95% CI 13.9 to 28.7) and 3.5% (0 to 8.5), respectively. Median, one, and two year survival data within prognostic groups in Leicester were equivalent to the EORTC and CALGB series. Survival curves were successfully stratified by the prognostic groups. Conclusions This study validates the EORTC and CALGB prognostic scoring systems which should be used both in the assessment of survival data of series in different countries and in the stratification of patients into randomised clinical studies.
Resumo:
Objective To compare the diagnostic accuracy of the interRAI Acute Care (AC) Cognitive Performance Scale (CPS2) and the Mini-Mental State Examination (MMSE), against independent clinical diagnosis for detecting dementia in older hospitalized patients. Design, Setting, and Participants The study was part of a prospective observational cohort study of patients aged ≥70 years admitted to four acute hospitals in Queensland, Australia, between 2008 and 2010. Recruitment was consecutive and patients expected to remain in hospital for ≥48 hours were eligible to participate. Data for 462 patients were available for this study. Measurements Trained research nurses completed comprehensive geriatric assessments and administered the interRAI AC and MMSE to patients. Two physicians independently reviewed patients’ medical records and assessments to establish the diagnosis of dementia. Indicators of diagnostic accuracy included sensitivity, specificity, predictive values, likelihood ratios and areas under receiver (AUC) operating characteristic curves. Results 85 patients (18.4%) were considered to have dementia according to independent clinical diagnosis. The sensitivity of the CPS2 [0.68 (95%CI: 0.58–0.77)] was not statistically different to the MMSE [0.75 (0.64–0.83)] in predicting physician diagnosed dementia. The AUCs for the 2 instruments were also not statistically different: CPS2 AUC = 0.83 (95%CI: 0.78–0.89) and MMSE AUC = 0.87 (95%CI: 0.83–0.91), while the CPS2 demonstrated higher specificity [0.92 95%CI: 0.89–0.95)] than the MMSE [0.82 (0.77–0.85)]. Agreement between the CPS2 and clinical diagnosis was substantial (87.4%; κ=0.61). Conclusion The CPS2 appears to be a reliable screening tool for assessing cognitive impairment in acutely unwell older hospitalized patients. These findings add to the growing body of evidence supporting the utility of the interRAI AC, within which the CPS2 is embedded. The interRAI AC offers the advantage of being able to accurately screen for both dementia and delirium without the need to use additional assessments, thus increasing assessment efficiency.
Resumo:
Collaborative infrastructure projects use hybrid formal and informal governance structures to manage transactions. Based on previous desk-top research, the authors identified the key mechanisms underlying project governance, and posited the performance implications of the governance (Chen et al. 2012). The current paper extends that qualitative research by testing the veracity of those findings using data from 320 Australian construction organisations. The results provide, for the first time, reliable and valid scales to measure governance and performance of collaborative projects, and the relationship between them. The results confirm seven of seven hypothesised governance mechanisms; 30 of 43 hypothesised underlying actions; eight of eight hypothesised key performance indicators; and the dual importance of formal and informal governance. A startling finding of the study was that the implementation intensity of informal mechanisms (non-contractual conditions) is a greater predictor of project performance variance than that of formal mechanisms (contractual conditions). Further, contractual conditions do not directly impact project performance; instead their impact is mediated by the non-contractual features of a project. Obligations established under the contract are not sufficient to optimise project performance.
Resumo:
Purpose This paper develops and estimates a model to measure consumer perceptions of trade show effectiveness. Design/methodology/approach Data were collected at three separate B2C trade shows. Study 1 (n=47) involved field interviews with data subjected to qualitative item generation and content analysis. Study 2 data (n=147) were subjected to exploratory factor analysis and item-total correlation to identify a preliminary factor structure for the effectiveness construct and to test for reliability. In Study 3 (n=592), confirmatory factor analysis was undertaken to more rigorously test the factor structure and generalise across industries. Validity testing was also performed. Findings A three-dimensional factor structure for assessing consumer visitors’ perceptions of trade show effectiveness was produced incorporating research, operational, and entertainment components. Research limitations/implications Data were collected in Australia and results may not generalise across cultural boundaries. Practical implications The resulting measurement model may be used as a reliable post-hoc diagnostic tool to identify areas of trade show effectiveness where specific performance improvements are needed. Results indicate that exhibitors and organisers of B2C trade shows should consider effectiveness as a multidimensional phenomenon with entertainment, product / industry research, and the facilitation of purchase decision-making processes and problem resolution being key objectives for consumer attendees. These elements of effectiveness should each be addressed by exhibitors and organisers in planning their displays and events. Originality/value This is the first study to provide an empirically valid model for assessing trade show effectiveness from the consumer visitor’s perspective.
Resumo:
The aim of this study was to validate the Children’s Eating Behaviour Questionnaire (CEBQ) in three ethnically and culturally diverse samples of mothers in Australia. Confirmatory factor analysis utilising structural equation modelling examined whether the established 8-factor model of the CEBQ was supported in our three populations: (i) a community sample of first-time mothers allocated to the control group of the NOURISH trial (mean child age = 24 months [SD = 1]; N = 244); (ii) a sample of immigrant Indian mothers of children aged 1–5 years (mean age = 34 months [SD = 14]; N = 203), and (iii) a sample of immigrant Chinese mothers of children aged 1–4 years (mean age = 36 months [SD = 14]; N = 216). The original 8-factor model provided an acceptable fit to the data in the NOURISH sample with minor post hoc re-specifications (two error covariances on Satiety Responsiveness and an item-factor covariance to account for a cross-loading of an item (Fussiness) on Satiety Responsiveness). The re-specified model showed reasonable fit in both the Indian and Chinese samples. Cronbach’s α estimates ranged from .73 to .91 in the Australian sample and .61–.88 in the immigrant samples. This study supports the appropriateness of the CEBQ in the multicultural Australian context.
Resumo:
The Child Feeding Questionnaire (CFQ) developed by Birch and colleagues (2001) is a widely used tool for measuring parental feeding beliefs, attitudes and practices. However, the appropriateness of the CFQ for use with Chinese populations is unknown. This study tested the construct validity of a novel Chinese version of the CFQ using confirmatory factor analysis (CFA). Participants included a convenience sample of 254 Chinese-Australian mothers of children aged 1-4 years. Prior to testing, the questionnaire was translated into Chinese using a translation-back-translation method, one item was re-worded to be culturally appropriate, a new item was added (monitoring), and five items that were not age-appropriate for the sample were removed. Based on previous literature, both a 7-factor and an 8-factor model were assessed via CFA. Results showed that the 8-factor model, which separated restriction and use of food rewards, improved the conceptual clarity of the constructs and provided a good fit to the data. Internal consistency of all eight factors was acceptable (Cronbach’s α: .60−.93). This modified 8-factor CFQ appears to be a linguistically and culturally appropriate instrument for assessing feeding beliefs and practices in Chinese-Australian mothers of young children.
Resumo:
Background Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Best Practices Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). Future Directions New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.
Resumo:
Background Promoting participation physical activity (PA) is an important means of promoting healthy growth and development in children with cerebral palsy (CP). The ActiGraph is a uniaxial accelerometer that provides a realtime measure of PA intensity, duration and frequency. Its small, light weight design makes it a promising measure of activity in children with CP. To date no study has validated the use of accelerometry as a measure of PA in ambulant adolescents with CP. Objectives To evaluate the validity of the ActiGraph accelerometer for measuring PA intensity in adolescents with CP, using oxygen consumption (VO2), measured using portable indirect calorimetry (Cosmed K4b2), as the criterion measure. Design Validation Study Participants/Setting: Ambulant adolescents with CP aged 10–16 years, GMFCS rating of I-III. The recruitment target is 30 (10 in each GMFCS level). Materials/Methods Participants wore the ActiGraph (counts/min) and a Cosmed K4b2 indirect calorimeter (mL/kg/min) during six activity trials: quiet sitting (QS), comfortable paced walking (CPW), brisk paced walking (BPW), fast paced walking (FPW), a ball-kicking protocol (KP) and a ball-throwing protocol (TP). MET levels (multiples of resting metabolism) for each activity were predicted from ActiGraph counts using the Freedson age-specific equation (Freedson et al. 2005) and compared with actual MET levels measured by the Cosmed. Predicted and measured METs for each activity trial were classified as light (> 1.5 METs and <4.6 METs) or moderate to vigorous intensity (≥ 4.6 METs). Results To date 36 bouts of activity have been completed (6 participants x 6 activities). Mean VO2 increased linearly as the intensity of the walking activity increased (CPW=9.47±2.16, BPW=14.06±4.38, FPW=19.21±5.68 ml/kg/min) and ActiGraph counts reflected this pattern (CPW=1099±574, BPW=2233±797 FPW=4707±1013 counts/min). The throwing protocol recording the lowest VO2 (TP=7.50±3.86 ml/kg/min) and lowest overall counts/min (TP=31±27 counts/min). When each of the 36 bouts were classified as either light or moderate to vigorous intensity using measured VO2 as the criterion measure, the Freedson equation correctly classified 28 from 36 bouts (78%). Conclusion/Clinical Implications These preliminary findings suggest that there is a relationship between the intensity of PA and direct measure of oxygen consumption and that therefore the ActiGraph may be a promising tool for accurately measuring free living PA in the community. Further data collection of the complete sample will enable secondary analysis of the relationship between PA and severity of CP (GMFCS level).
Resumo:
Traffic state estimation in an urban road network remains a challenge for traffic models and the question of how such a network performs remains a difficult one to answer for traffic operators. Lack of detailed traffic information has long restricted research in this area. The introduction of Bluetooth into the automotive world presented an alternative that has now developed to a stage where large-scale test-beds are becoming available, for traffic monitoring and model validation purposes. But how much confidence should we have in such data? This paper aims to give an overview of the usage of Bluetooth, primarily for the city-scale management of urban transport networks, and to encourage researchers and practitioners to take a more cautious look at what is currently understood as a mature technology for monitoring travellers in urban environments. We argue that the full value of this technology is yet to be realised, for the analytical accuracies peculiar to the data have still to be adequately resolved.