65 resultados para Data transmission systems.
Resumo:
We propose a new kind of asymmetric mutual authentication from passwords with stronger privacy against malicious servers, lest they be tempted to engage in “cross-site user impersonation” to each other. It enables a person to authenticate (with) arbitrarily many independent servers, over adversarial channels, using a memorable and reusable single short password. Beside the usual PAKE security guarantees, our framework goes to lengths to secure the password against brute-force cracking from privileged server information.
Resumo:
In this work, we propose a new generalization of the notion of group signatures, that allows signers to cover the entire spectrum from complete disclosure to complete anonymity. Previous group signature constructions did not provide any disclosure capability, or at best a very limited one (such as subset membership). Our scheme offers a very powerful language for disclosing exactly in what capacity a subgroup of signers is making a signature on behalf of the group.
Resumo:
For the past several decades, cryptographers have consistently provided us with stronger and more capable primitives and protocols that have found many applications in security systems in everyday life. One of the central tenets of cryptographic design is that, whereas a system’s architecture ought to be public and open to scrutiny, the keys on which it depends — long, utterly random, unique strings of bits — will be perfectly preserved by their owner, and yet nominally inaccessible to foes.
Resumo:
This thesis focuses on providing reliable data transmissions in large-scale industrial wireless sensor networks through improving network layer protocols. It addresses three major problems: scalability, dynamic industrial environments and coexistence of multiple types of data traffic in a network. Theoretical developments are conducted, followed by simulation studies for verification of theoretic results. The approach proposed in this thesis has been shown to be effective for large-scale network implementation and to provide improved data transmission reliability for both periodic and sporadic traffic.
Resumo:
Supervisory Control and Data Acquisition systems (SCADA) are widely used to control critical infrastructure automatically. Capturing and analyzing packet-level traffic flowing through such a network is an essential requirement for problems such as legacy network mapping and fault detection. Within the framework of captured network traffic, we present a simple modeling technique, which supports the mapping of the SCADA network topology via traffic monitoring. By characterizing atomic network components in terms of their input-output topology and the relationship between their data traffic logs, we show that these modeling primitives have good compositional behaviour, which allows complex networks to be modeled. Finally, the predictions generated by our model are found to be in good agreement with experimentally obtained traffic.
Resumo:
Modern power systems have become more complex due to the growth in load demand, the installation of Flexible AC Transmission Systems (FACTS) devices and the integration of new HVDC links into existing AC grids. On the other hand, the introduction of the deregulated and unbundled power market operational mechanism, together with present changes in generation sources including connections of large renewable energy generation with intermittent feature in nature, have further increased the complexity and uncertainty for power system operation and control. System operators and engineers have to confront a series of technical challenges from the operation of currently interconnected power systems. Among the many challenges, how to evaluate the steady state and dynamic behaviors of existing interconnected power systems effectively and accurately using more powerful computational analysis models and approaches becomes one of the key issues in power engineering. The traditional computing techniques have been widely used in various fields for power system analysis with varying degrees of success. The rapid development of computational intelligence, such as neural networks, fuzzy systems and evolutionary computation, provides tools and opportunities to solve the complex technical problems in power system planning, operation and control.
Resumo:
A system for monitoring conditions in a remote environment. The system comprising a data transmission network including a plurality of data sensing nodes. Each data sensing node includes an environment sensing means for periodically sensing the environment around node, a transmission means for periodic wireless transmission of sensed data to adjacent data sensing nodes. These adjacent data sensing nodes combining their sensed data with the received data from other data sensing nodes and on transmit the combined data.
Resumo:
Cycloidal drives are compact, high-ratio gear transmission systems used in a wide range of mechanical applications from conveyor drives to articulated robots. This research hypothesises that these drives can be successfully applied in dynamic loading situations and thereby focuses on the understanding of differences between static and dynamic loading conditions where load varies with time. New methods of studying the behaviour of these drives under static and dynamic loading circumstances were developed, leading to novel understanding and knowledge. A new model was developed to facilitate research and development on Cycloidal drives with potential benefits for manufacturing, robotics and mechanical-process-industries worldwide.
Resumo:
Secure communication channels are typically constructed from an authenticated key exchange (AKE) protocol, which authenticates the communicating parties and establishes shared secret keys, and a secure data transmission layer, which uses the secret keys to encrypt data. We address the partial leakage of communicating parties' long-term secret keys due to various side-channel attacks, and the partial leakage of plaintext due to data compression. Both issues can negatively affect the security of channel establishment and data transmission. In this work, we advance the modelling of security for AKE protocols by considering more granular partial leakage of parties' long-term secrets. We present generic and concrete constructions of two-pass leakage-resilient key exchange protocols that are secure in the proposed security models. We also examine two techniques--heuristic separation of secrets and fixed-dictionary compression--for enabling compression while protecting high-value secrets.
Resumo:
Plasmonics is a recently emerged technology that enables the compression of electromagnetic waves into miniscule metallic structures, thus enabling the focusing and routing of light on the nanoscale. Plasmonic waveguides can be used to miniaturise the size of integrated chip circuits while increasing the data transmission speed. Plasmonic waveguides are used to route the plasmons around a circuit and are a major focus of this thesis. Also, plasmons are highly sensitive to the surrounding dielectric environment. Using this property we have experimentally realised a refractive index sensor to detect refractive index change in solutions.
Resumo:
Access to quality higher education is challenging for many Western Australians that live outside the metropolitan area. In 2010, the School of Education moved to flexible delivery of a fully online Bachelor of Education degree for their non -metropolitan students. The new model of delivery allows access for students from any location provided they have a computer and an internet connection. A number of academic staff had previously used an asynchronous environment to deliver learning modules housed within a learning management system (LMS) but had not used synchronous software with their students. To enhance the learning environment and to provide high quality learning experiences to students learning at a distance, the adoption of synchronous software (Elluminate Live) was introduced. This software is a real-time virtual classroom environment that allows for communication through Voice over Internet Protocol (VoIP) and videoconferencing, along with a large number of collaboration tools to engage learners. This research paper reports on the integration of a live e-learning solution into the current LMS environment. Qualitative data were collected from academic staff through informal interviews and participant observation. The findings discuss (i) perceived level of support; (ii) identification of strategies used to create an effective online teacher presence; (iii) the perceived impact on the students' learning outcomes; and (iv) guidelines for professional development to enhance pedagogy within the live e-learning environment.
Resumo:
Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.
Resumo:
The paper analyses the expected value of OD volumes from probe with fixed error, error that is proportional to zone size and inversely proportional to zone size. To add realism to the analysis, real trip ODs in the Tokyo Metropolitan Region are synthesised. The results show that for small zone coding with average radius of 1.1km, and fixed measurement error of 100m, an accuracy of 70% can be expected. The equivalent accuracy for medium zone coding with average radius of 5km would translate into a fixed error of approximately 300m. As expected small zone coding is more sensitive than medium zone coding as the chances of the probe error envelope falling into adjacent zones are higher. For the same error radii, error proportional to zone size would deliver higher level of accuracy. As over half (54.8%) of the trip ends start or end at zone with equivalent radius of ≤ 1.2 km and only 13% of trips ends occurred at zones with equivalent radius ≥2.5km, measurement error that is proportional to zone size such as mobile phone would deliver higher level of accuracy. The synthesis of real OD with different probe error characteristics have shown that expected value of >85% is difficult to achieve for small zone coding with average radius of 1.1km. For most transport applications, OD matrix at medium zone coding is sufficient for transport management. From this study it can be drawn that GPS with error range between 2 and 5m, and at medium zone coding (average radius of 5km) would provide OD estimates greater than 90% of the expected value. However, for a typical mobile phone operating error range at medium zone coding the expected value would be lower than 85%. This paper assumes transmission of one origin and one destination positions from the probe. However, if multiple positions within the origin and destination zones are transmitted, map matching to transport network could be performed and it would greatly improve the accuracy of the probe data.
Dynamic analysis of on-board mass data to determine tampering in heavy vehicle on-board mass systems
Resumo:
Transport Certification Australia Limited, jointly with the National Transport Commission, has undertaken a project to investigate the feasibility of on-board mass monitoring (OBM) devices for regulatory purposes. OBM increases jurisdictional confidence in operational heavy vehicle compliance. This paper covers technical issues regarding potential use of dynamic data from OBM systems to indicate that tampering has occurred. Tamper-evidence and accuracy of current OBM systems needed to be determined before any regulatory schemes were put in place for its use. Tests performed to determine potential for, and ease of, tampering. An algorithm was developed to detect tamper events. Its results are detailed.