38 resultados para Corridors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most large cities around the world are undergoing rapid transport sector development to cater for increased urbanization. Subsequently the issues of mobility, access equity, congestion, operational safety and above all environmental sustainability are becoming increasingly crucial in transport planning and policy making. The popular response in addressing these issues has been demand management, through improvement of motorised public transport (MPT) modes (bus, train, tram) and non-motorized transport (NMT) modes (walk, bicycle); improved fuel technology. Relatively little attention has however been given to another readily available and highly sustainable component of the urban transport system, non-motorized public transport (NMPT) such as the pedicab that operates on a commercial basis and serves as an NMT taxi; and has long standing history in many Asian cities; relatively stable in existence in Latin America; and reemerging and expanding in Europe, North America and Australia. Consensus at policy level on the apparent benefits, costs and management approach for NMPT integration has often been a major transport planning problem. Within this context, this research attempts to provide a more complete analysis of the current existence rationale and possible future, or otherwise, of NMPT as a regular public transport system. The analytical process is divided into three major stages. Stage 1 reviews the status and role condition of NMPT as regular public transport on a global scale- in developing cities and developed cities. The review establishes the strong ongoing and future potential role of NMPT in major developing cities. Stage 2 narrows down the status review to a case study city of a developing country in order to facilitate deeper role review and status analysis of the mode. Dhaka, capital city of Bangladesh, has been chosen due to its magnitude of NMPT presence. The review and analysis reveals the multisectoral and dominant role of NMPT in catering for the travel need of Dhaka transport users. The review also indicates ad-hoc, disintegrated policy planning in management of NMPT and the need for a planning framework to facilitate balanced integration between NMPT and MT in future. Stage 3 develops an integrated, multimodal planning framework (IMPF), based on a four-step planning process. This includes defining the purpose and scope of the planning exercise, determining current deficiencies and preferred characteristics for the proposed IMPF, selection of suitable techniques to address the deficiencies and needs of the transport network while laying out the IMPF and finally, development of a delivery plan for the IMPF based on a selected layout technique and integration approach. The output of the exercise is a planning instrument (decision tool) that can be used to assign a road hierarchy in order to allocate appropriate traffic to appropriate network type, particularly to facilitate the operational balance between MT and NMT. The instrument is based on a partial restriction approach of motorised transport (MT) and NMT, structured on the notion of functional hierarchy approach, and distributes/prioritises MT and NMT such that functional needs of the network category is best complemented. The planning instrument based on these processes and principles offers a six-level road hierarchy with a different composition of network-governing attributes and modal priority, for the current Dhaka transport network, in order to facilitate efficient integration of NMT with MT. A case study application of the instrument on a small transport network of Dhaka also demonstrates the utility, flexibility and adoptability of the instrument in logically allocating corridors with particular positions in the road hierarchy paradigm. Although the tool is useful in enabling balanced distribution of NMPT with MT at different network levels, further investigation is required with reference to detailed modal variations, scales and locations of a network to further generalise the framework application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Providing mobility corridors for communities, enabling freight networks to transport goods and services, and a pathway for emergency services and disaster relief operations, roads are a vital component of our societal system. In the coming decades, a number of modern issues will face road agencies as a result of climate change, resource scarcity and energy related challenges that will have implications for society. To date, these issues have been discussed on a case by case basis, leading to a fragmented approach by state and federal agencies in considering the future of roads – with potentially significant cost and risk implications. Within this context, this paper summarises part of a research project undertaken within the ‘Greening the Built Environment’ program of the Sustainable Built Environment National Research Centre (SBEnrc, Australia), which identified key factors or ‘trends’ affecting the future of roads and key strategies to ensure that road agencies can continue to deliver road infrastructure that meets societal needs in an environmentally appropriate manner. The research was conducted over two years, including a review of academic and state agency literature, four stakeholder workshops in Western Australia and Queensland, and industry consultation. The project was supported financially and through peer review and contribution, by Main Roads Western Australia, QLD Department of Transport and Main Roads, Parsons Brinckerhoff, John Holland Group, and the Australian Green Infrastructure Council (AGIC). The project highlighted several potential trends that are expected to affect road agencies in the future, including predicted resource and materials shortages, increases in energy and natural resources prices, increased costs related to greenhouse gas emissions, changing use and expectations of roads, and changes in the frequency and intensity of weather events. Exploring the implications of these potential futures, the study then developed a number of strategies in order to prepare transport agencies for the associated risks that such trends may present. An unintended outcome of the project was the development of a process for enquiring into future scenarios, which will be explored further in Stage 2 of the project (2013-2014). The study concluded that regardless of the type and scale of response by the agency, strategies must be holistic in approach, and remain dynamic and flexible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Public Transport Travel Time Variability (PTTV) is essential for understanding the deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes the key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyzes the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach, using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and analyzing the transit systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Climate Change Adaptation for Natural Resource Management (NRM) in East Coast Australia Project aims to foster and support an effective “community of practice” for climate change adaptation within the East Coast Cluster NRM regions that will increase the capacity for adaptation to climate change through enhancements in knowledge and skills and through the establishment of long‐term collaborations. It is being delivered by six consortium research partners: * The University of Queensland (project lead) * Griffith University * University of the Sunshine Coast * CSIRO * New South Wales Office of Environment and Heritage * Queensland Department of Science, IT, Innovation and the Arts (Queensland Herbarium). The project relates to the East Coast Cluster, comprising the six coastal NRM regions and regional bodies between Rockhampton and Sydney: * Fitzroy Basin Association (FBA) * Burnett‐Mary Regional Group (BMRG) * SEQ Catchments (SEQC) * Northern Rivers Catchment Management Authority (CMA) (NRCMA) * Hunter‐Central Rivers CMA (HCRCMA) * Hawkesbury Nepean CMA (HNCMA). The aims of this report are to summarise the needs of the regional bodies in relation to NRM planning for climate change adaptation, and provide a basis for developing the detailed work plan for the research consortium. Two primary methods were used to identify the needs of the regional bodies: (1) document analysis of the existing NRM/ Catchment Action Plans (CAPs) and applications by the regional bodies for funding under Stream 1 of the Regional NRM Planning for Climate Change Fund, and; (2) a needs analysis workshop, held in May 2013 involving representatives from the research consortium partners and the regional bodies. The East Coast Cluster includes five of the ten largest significant urban areas in Australia, world heritage listed natural environments, significant agriculture, mining and extensive grazing. The three NSW CMAs have recently completed strategic level CAPs, with implementation plans to be finalised in 2014/2015. SEQC and FBA are beginning a review of their existing NRM Plans, to be completed in 2014 and 2015 respectively; while BMRG is aiming to produce a NRM and Climate Variability Action Strategy. The regional bodies will receive funding from the Australian Government through the Regional NRM Planning for Climate Change Fund (NRM Fund) to improve regional planning for climate change and help guide the location of carbon and biodiversity activities, including wildlife corridors. The bulk of the funding will be available for activities in 2013/2014, with smaller amounts available in subsequent years. Most regional bodies aim to have a large proportion of the planning work complete by the end of 2014. In addition, NSW CMAs are undergoing major structural change and will be incorporated into semi‐autonomous statutory Local Land Services bodies from 2014. Boundaries will align with local government boundaries and there will be significant change in staff and structures. The regional bodies in the cluster have a varying degree of climate knowledge. All plans recognise climate change as a key driver of change, but there are few specific actions or targets addressing climate change. Regional bodies also have varying capacity to analyse large volumes of spatial or modelling data. Due to the complex nature of natural resource management, all regional bodies work with key stakeholders (e.g. local government, industry groups, and community groups) to deliver NRM outcomes. Regional bodies therefore require project outputs that can be used directly in stakeholder engagement activities, and are likely to require some form of capacity building associated with each of the outputs to maximise uptake. Some of the immediate needs of the regional bodies are a summary of information or tools that are able to be used immediately; and a summary of the key outputs and milestone dates for the project, to facilitate alignment of planning activities with research outputs. A project framework is useful to show the linkages between research elements and the relevance of the research to the adaptive management cycle for NRM planning in which the regional bodies are engaged. A draft framework is proposed to stimulate and promote discussion on research elements and linkages; this will be refined during and following the development of the detailed project work plan. The regional bodies strongly emphasised the need to incorporate a shift to a systems based resilience approach to NRM planning, and that approach is included in the framework. The regional bodies identified that information on climate projections would be most useful at regional and subregional scale, to feed into scenario planning and impact analysis. Outputs should be ‘engagement ready’ and there is a need for capacity building to enable regional bodies to understand and use the projections in stakeholder engagement. There was interest in understanding the impacts of climate change projections on ecosystems (e.g. ecosystem shift), and the consequent impacts on the production of ecosystem services. It was emphasised that any modelling should be able to be used by the regional bodies with their stakeholders to allow for community input (i.e. no black box models). The online regrowth benefits tool was of great interest to the regional bodies, as spatial mapping of carbon farming opportunities would be relevant to their funding requirements. The NSW CMAs identified an interest in development of the tool for NSW vegetation types. Needs relating to socio‐economic information included understanding the socio‐economic determinants of carbon farming uptake and managing community expectations. A need was also identified to understand the vulnerability of industry groups as well as community to climate change impacts, and in particular understanding how changes in the flow of ecosystem services would interact with the vulnerability of these groups to impact on the linked ecologicalsocio‐economic system. Responses to disasters (particularly flooding and storm surge) and recovery responses were also identified as being of interest. An ecosystem services framework was highlighted as a useful approach to synthesising biophysical and socioeconomic information in the context of a systems based, resilience approach to NRM planning. A need was identified to develop processes to move towards such an approach to NRM planning from the current asset management approach. Examples of best practice in incorporating climate science into planning, using scenarios for stakeholder engagement in planning and processes for institutionalising learning were also identified as cross‐cutting needs. The over‐arching theme identified was the need for capacity building for the NRM bodies to best use the information available at any point in time. To this end a planners working group has been established to support the building of a network of informed and articulate NRM agents with knowledge of current climate science and capacity to use current tools to engage stakeholders in NRM planning for climate change adaptation. The planners working group would form the core group of the community of practice, with the broader group of stakeholders participating when activities aligned with their interests. In this way, it is anticipated that the Project will contribute to building capacity within the wider community to effectively plan for climate change adaptation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heavy haul rail network in Queensland Australia generally adopts a lightning impulse withstand voltage rating of 250 kV for the switchgear and autotransformers within its 50 kV ac traction feeder stations. The aging switchgear across a number of feeder stations in this network are undergoing upgrade and the rail network operator is considering the possibility of using 200 kV rating for the upgraded switchgear. This paper investigates the lightning over-voltages that could occur at the feeder stations under review. Fast front transient models of the feeder stations and the associated traction corridors are developed in PSCAD/EMTDC software. Simulations are conducted to evaluate the likely over-voltages under various scenarios and the results are presented. Finally, the required lightning impulse withstand voltage rating for the switchgear is determined based on the simulation results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant media city globally , Sydney is the production and design centre for the Australian media system and a subsidiary node of larger international systems principally headquartered in Los Angeles and London. Its media cluster is undergoing transformations to improve its position internationally by increasing capabilities and ties to other Australian and international production clusters. Sydney’s media cluster is a collection of suburbs forming an “arc” along major transport corridors stretching from Macquarie Park in the north to Sydney airport in the south. As a dispersed rather than tightly bound cluster, it is defined by the functional proximity provided by automobile and telecommunication networks Sydney’s media cluster is considered here along two dimensions—that of Sydney’s place within the ecology of Australian and international media and that of its internal organization within the geographical space of metropolitan Sydney. The first examines Sydney’s media cluster at the level of the metropolitan area of Sydney within its state, national and international contexts; while the second digs below this level to explore its working out in urban space.