193 resultados para Condition-based maintenance
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map
Resumo:
Reliable budget/cost estimates for road maintenance and rehabilitation are subjected to uncertainties and variability in road asset condition and characteristics of road users. The CRC CI research project 2003-029-C ‘Maintenance Cost Prediction for Road’ developed a method for assessing variation and reliability in budget/cost estimates for road maintenance and rehabilitation. The method is based on probability-based reliable theory and statistical method. The next stage of the current project is to apply the developed method to predict maintenance/rehabilitation budgets/costs of large networks for strategic investment. The first task is to assess the variability of road data. This report presents initial results of the analysis in assessing the variability of road data. A case study of the analysis for dry non reactive soil is presented to demonstrate the concept in analysing the variability of road data for large road networks. In assessing the variability of road data, large road networks were categorised into categories with common characteristics according to soil and climatic conditions, pavement conditions, pavement types, surface types and annual average daily traffic. The probability distributions, statistical means, and standard deviation values of asset conditions and annual average daily traffic for each type were quantified. The probability distributions and the statistical information obtained in this analysis will be used to asset the variation and reliability in budget/cost estimates in later stage. Generally, we usually used mean values of asset data of each category as input values for investment analysis. The variability of asset data in each category is not taken into account. This analysis method demonstrated that it can be used for practical application taking into account the variability of road data in analysing large road networks for maintenance/rehabilitation investment analysis.
Resumo:
An estimation of costs for maintenance and rehabilitation is subject to variation due to the uncertainties of input parameters. This paper presents the results of an analysis to identify input parameters that affect the prediction of variation in road deterioration. Road data obtained from 1688 km of a national highway located in the tropical northeast of Queensland in Australia were used in the analysis. Data were analysed using a probability-based method, the Monte Carlo simulation technique and HDM-4’s roughness prediction model. The results of the analysis indicated that among the input parameters the variability of pavement strength, rut depth, annual equivalent axle load and initial roughness affected the variability of the predicted roughness. The second part of the paper presents an analysis to assess the variation in cost estimates due to the variability of the overall identified critical input parameters.
Resumo:
One of the key issues facing public asset owners is the decision of refurbishing aged built assets. This decision requires an assessment of the “remaining service life” of the key components in a building. The remaining service life is significantly dependent upon the existing condition of the asset and future degradation patterns considering durability and functional obsolescence. Recently developed methods on Residual Service Life modelling, require sophisticated data that are not readily available. Most of the data available are in the form of reports prior to undertaking major repairs or in the form of sessional audit reports. Valuable information from these available sources can serve as bench marks for estimating the reference service life. The authors have acquired similar informations from a public asset building in Melbourne. Using these informations, the residual service life of a case study building façade has been estimated in this paper based on state-of-the-art approaches. These estimations have been evaluated against expert opinion. Though the results are encouraging it is clear that the state-of-the-art methodologies can only provide meaningful estimates provided the level and quality of data are available. This investigation resulted in the development of a new framework for maintenance that integrates the condition assessment procedures and factors influencing residual service life
Resumo:
Structural health is a vital aspect of infrastructure sustainability. As a part of a vital infrastructure and transportation network, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs are a difficult burden for infrastructure owners. The structural health monitoring (SHM) systems proposed recently are incorporated with vibration-based damage detection techniques, statistical methods and signal processing techniques and have been regarded as efficient and economical ways to assess bridge condition and foresee probable costly failures. In this chapter, the recent developments in damage detection and condition assessment techniques based on vibration-based damage detection and statistical methods are reviewed. The vibration-based damage detection methods based on changes in natural frequencies, curvature or strain modes, modal strain energy, dynamic flexibility, artificial neural networks, before and after damage, and other signal processing methods such as Wavelet techniques, empirical mode decomposition and Hilbert spectrum methods are discussed in this chapter.