496 resultados para Composite particle models
Resumo:
Production of nanofibrous polyacrylonitrile/calcium carbonate (PAN/CaCO3) nanocomposite web was carried out through solution electrospinning process. Pore generating nanoparticles were leached from the PAN matrices in hydrochloric acid bath with the purpose of producing an ultimate nanoporous structure. The possible interaction between CaCO3 nanoparticles and PAN functional groups was investigated. Atomic absorption method was used to measure the amount of extracted CaCO3 nanoparticles. Morphological observation showed nanofibers of 270–720 nm in diameter containing nanopores of 50–130 nm. Monitoring the governing parameters statistically, it was found that the amount of extraction (ε) of CaCO3was increased when the web surface area (a) was broadened according to a simple scaling law (ε = 3.18 a0.4). The leaching process was maximized in the presence of 5% v/v of acid in the extraction bath and 5 wt % of CaCO3 in the polymer solution. Collateral effects of the extraction time and temperature showed exponential growth within a favorable extremum at 50°C for 72 h. Concentration of dimethylformamide as the solvent had no significant impact on the extraction level.
Resumo:
In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low E-modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations.
Resumo:
This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.
Resumo:
Mathematical models of mosquito-borne pathogen transmission originated in the early twentieth century to provide insights into how to most effectively combat malaria. The foundations of the Ross–Macdonald theory were established by 1970. Since then, there has been a growing interest in reducing the public health burden of mosquito-borne pathogens and an expanding use of models to guide their control. To assess how theory has changed to confront evolving public health challenges, we compiled a bibliography of 325 publications from 1970 through 2010 that included at least one mathematical model of mosquito-borne pathogen transmission and then used a 79-part questionnaire to classify each of 388 associated models according to its biological assumptions. As a composite measure to interpret the multidimensional results of our survey, we assigned a numerical value to each model that measured its similarity to 15 core assumptions of the Ross–Macdonald model. Although the analysis illustrated a growing acknowledgement of geographical, ecological and epidemiological complexities in modelling transmission, most models during the past 40 years closely resemble the Ross–Macdonald model. Modern theory would benefit from an expansion around the concepts of heterogeneous mosquito biting, poorly mixed mosquito-host encounters, spatial heterogeneity and temporal variation in the transmission process.
Resumo:
This thesis developed semi-parametric regression models for estimating the spatio-temporal distribution of outdoor airborne ultrafine particle number concentration (PNC). The models developed incorporate multivariate penalised splines and random walks and autoregressive errors in order to estimate non-linear functions of space, time and other covariates. The models were applied to data from the "Ultrafine Particles from Traffic Emissions and Child" project in Brisbane, Australia, and to longitudinal measurements of air quality in Helsinki, Finland. The spline and random walk aspects of the models reveal how the daily trend in PNC changes over the year in Helsinki and the similarities and differences in the daily and weekly trends across multiple primary schools in Brisbane. Midday peaks in PNC in Brisbane locations are attributed to new particle formation events at the Port of Brisbane and Brisbane Airport.
Resumo:
Composite steel-concrete structures experience non-linear effects which arise from both instability-related geometric non-linearity and from material non-linearity in all of their component members. Because of this, conventional design procedures cannot capture the true behaviour of a composite frame throughout its full loading range, and so a procedure to account for those non-linearities is much needed. This paper therefore presents a numerical procedure capable of addressing geometric and material non-linearities at the strength limit state based on the refined plastic hinge method. Different material non-linearity for different composite structural components such as T-beams, concrete-filled tubular (CFT) and steel-encased reinforced concrete (SRC) sections can be treated using a routine numerical procedure for their section properties in this plastic hinge approach. Simple and conservative initial and full yield surfaces for general composite sections are proposed in this paper. The refined plastic hinge approach models springs at the ends of the element which are activated when the surface defining the interaction of bending and axial force at first yield is reached; a transition from the first yield interaction surface to the fully plastic interaction surface is postulated based on a proposed refined spring stiffness, which formulates the load-displacement relation for material non-linearity under the interaction of bending and axial actions. This produces a benign method for a beam-column composite element under general loading cases. Another main feature of this paper is that, for members containing a point of contraflexure, its location is determined with a simple application of the method herein and a node is then located at this position to reproduce the real flexural behaviour and associated material non-linearity of the member. Recourse is made to an updated Lagrangian formulation to consider geometric non-linear behaviour and to develop a non-linear solution strategy. The formulation with the refined plastic hinge approach is efficacious and robust, and so a full frame analysis incorporating geometric and material non-linearity is tractable. By way of contrast, the plastic zone approach possesses the drawback of strain-based procedures which rely on determining plastic zones within a cross-section and which require lengthwise integration. Following development of the theory, its application is illustrated with a number of varied examples.
Resumo:
This research is carried out by using finite element modelling of building prototypes with three different layouts (rectangular, octagonal and L-shaped) for three different heights (98.0 m, 147.0 m and 199.5 m) for the optimization of lateral load-resisting systems in composite high-rise buildings. Variations of lateral bracings (different number and varied placement along model height of belt-truss and outrigger floors) with RCC (reinforced cement concrete) core wall are used in composite high-rise building models. Prototypes of composite buildings are analysed for dynamic wind and seismic loads. The effects on serviceability (deflection and frequency) of models are studied and conclusions are deduced.
Resumo:
This article addresses the problem of estimating the Quality of Service (QoS) of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem impose restrictions on the topology of the orchestration models, limiting their applicability to well-structured orchestration models for example. This article lifts these restrictions by proposing a method for aggregate QoS computation that deals with more general types of unstructured orchestration models. The applicability and scalability of the proposed method are validated using a collection of models from industrial practice.
Resumo:
This paper addresses the problem of computing the aggregate QoS of a composite service given the QoS of the services participating in the composition. Previous solutions to this problem are restricted to composite services with well-structured orchestration models. Yet, in existing languages such as WS-BPEL and BPMN, orchestration models may be unstructured. This paper lifts this limitation by providing equations to compute the aggregate QoS for general types of irreducible unstructured regions in orchestration models. In conjunction with existing algorithms for decomposing business process models into single-entry-single-exit regions, these functions allow us to cover a larger set of orchestration models than existing QoS aggregation techniques.
Resumo:
Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 kg/m3 and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (≥ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.
Resumo:
We construct a two-scale mathematical model for modern, high-rate LiFePO4cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently.
Resumo:
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Resumo:
Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale.
Resumo:
The issue of using informative priors for estimation of mixtures at multiple time points is examined. Several different informative priors and an independent prior are compared using samples of actual and simulated aerosol particle size distribution (PSD) data. Measurements of aerosol PSDs refer to the concentration of aerosol particles in terms of their size, which is typically multimodal in nature and collected at frequent time intervals. The use of informative priors is found to better identify component parameters at each time point and more clearly establish patterns in the parameters over time. Some caveats to this finding are discussed.