254 resultados para Complexity of Distribution
Resumo:
Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.
Resumo:
The effects of particulate matter on environment and public health have been widely studied in recent years. A number of studies in the medical field have tried to identify the specific effect on human health of particulate exposure, but agreement amongst these studies on the relative importance of the particles’ size and its origin with respect to health effects is still lacking. Nevertheless, air quality standards are moving, as the epidemiological attention, towards greater focus on the smaller particles. Current air quality standards only regulate the mass of particulate matter less than 10 μm in aerodynamic diameter (PM10) and less than 2.5 μm (PM2.5). The most reliable method used in measuring Total Suspended Particles (TSP), PM10, PM2.5 and PM1 is the gravimetric method since it directly measures PM concentration, guaranteeing an effective traceability to international standards. This technique however, neglects the possibility to correlate short term intra-day variations of atmospheric parameters that can influence ambient particle concentration and size distribution (emission strengths of particle sources, temperature, relative humidity, wind direction and speed and mixing height) as well as human activity patterns that may also vary over time periods considerably shorter than 24 hours. A continuous method to measure the number size distribution and total number concentration in the range 0.014 – 20 μm is the tandem system constituted by a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS). In this paper, an uncertainty budget model of the measurement of airborne particle number, surface area and mass size distributions is proposed and applied for several typical aerosol size distributions. The estimation of such an uncertainty budget presents several difficulties due to i) the complexity of the measurement chain, ii) the fact that SMPS and APS can properly guarantee the traceability to the International System of Measurements only in terms of number concentration. In fact, the surface area and mass concentration must be estimated on the basis of separately determined average density and particle morphology. Keywords: SMPS-APS tandem system, gravimetric reference method, uncertainty budget, ultrafine particles.
Resumo:
Successful product innovation and the ability of companies to continuously improve their innovation processes are rapidly becoming essential requirements for competitive advantage and long-term growth in both manufacturing and service industries. It is now recognized that companies must develop innovation capabilities across all stages of the product development, manufacture, and distribution cycle. These Continuous Product Innovation (CPI) capabilities are closely associated with a company’s knowledge management systems and processes. Companies must develop mechanisms to continuously improve these capabilities over time. Using results of an international survey on CPI practices, sets of companies are identified by similarities in specific contingencies related to their complexity of product, process, technological, and customer interface. Differences between the learning behaviors found present in the company groups and in the levers used to develop and support these behaviors are identified and discussed. This paper also discusses appropriate mechanisms for firms with similar complexities, and some approaches they can use to improve their organizational learning and product innovation.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Vehicle emitted particles are of significant concern based on their potential to influence local air quality and human health. Transport microenvironments usually contain higher vehicle emission concentrations compared to other environments, and people spend a substantial amount of time in these microenvironments when commuting. Currently there is limited scientific knowledge on particle concentration, passenger exposure and the distribution of vehicle emissions in transport microenvironments, partially due to the fact that the instrumentation required to conduct such measurements is not available in many research centres. Information on passenger waiting time and location in such microenvironments has also not been investigated, which makes it difficult to evaluate a passenger’s spatial-temporal exposure to vehicle emissions. Furthermore, current emission models are incapable of rapidly predicting emission distribution, given the complexity of variations in emission rates that result from changes in driving conditions, as well as the time spent in driving condition within the transport microenvironment. In order to address these scientific gaps in knowledge, this work conducted, for the first time, a comprehensive statistical analysis of experimental data, along with multi-parameter assessment, exposure evaluation and comparison, and emission model development and application, in relation to traffic interrupted transport microenvironments. The work aimed to quantify and characterise particle emissions and human exposure in the transport microenvironments, with bus stations and a pedestrian crossing identified as suitable research locations representing a typical transport microenvironment. Firstly, two bus stations in Brisbane, Australia, with different designs, were selected to conduct measurements of particle number size distributions, particle number and PM2.5 concentrations during two different seasons. Simultaneous traffic and meteorological parameters were also monitored, aiming to quantify particle characteristics and investigate the impact of bus flow rate, station design and meteorological conditions on particle characteristics at stations. The results showed higher concentrations of PN20-30 at the station situated in an open area (open station), which is likely to be attributed to the lower average daily temperature compared to the station with a canyon structure (canyon station). During precipitation events, it was found that particle number concentration in the size range 25-250 nm decreased greatly, and that the average daily reduction in PM2.5 concentration on rainy days compared to fine days was 44.2 % and 22.6 % at the open and canyon station, respectively. The effect of ambient wind speeds on particle number concentrations was also examined, and no relationship was found between particle number concentration and wind speed for the entire measurement period. In addition, 33 pairs of average half-hourly PN7-3000 concentrations were calculated and identified at the two stations, during the same time of a day, and with the same ambient wind speeds and precipitation conditions. The results of a paired t-test showed that the average half-hourly PN7-3000 concentrations at the two stations were not significantly different at the 5% confidence level (t = 0.06, p = 0.96), which indicates that the different station designs were not a crucial factor for influencing PN7-3000 concentrations. A further assessment of passenger exposure to bus emissions on a platform was evaluated at another bus station in Brisbane, Australia. The sampling was conducted over seven weekdays to investigate spatial-temporal variations in size-fractionated particle number and PM2.5 concentrations, as well as human exposure on the platform. For the whole day, the average PN13-800 concentration was 1.3 x 104 and 1.0 x 104 particle/cm3 at the centre and end of the platform, respectively, of which PN50-100 accounted for the largest proportion to the total count. Furthermore, the contribution of exposure at the bus station to the overall daily exposure was assessed using two assumed scenarios of a school student and an office worker. It was found that, although the daily time fraction (the percentage of time spend at a location in a whole day) at the station was only 0.8 %, the daily exposure fractions (the percentage of exposures at a location accounting for the daily exposure) at the station were 2.7% and 2.8 % for exposure to PN13-800 and 2.7% and 3.5% for exposure to PM2.5 for the school student and the office worker, respectively. A new parameter, “exposure intensity” (the ratio of daily exposure fraction and the daily time fraction) was also defined and calculated at the station, with values of 3.3 and 3.4 for exposure to PN13-880, and 3.3 and 4.2 for exposure to PM2.5, for the school student and the office worker, respectively. In order to quantify the enhanced emissions at critical locations and define the emission distribution in further dispersion models for traffic interrupted transport microenvironments, a composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. This model does not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bidirectional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. The CLSE model was also applied at a signalled pedestrian crossing, in order to assess increased particle number emissions from motor vehicles when forced to stop and accelerate from rest. The CLSE model was used to calculate the total emissions produced by a specific number and mix of light petrol cars and diesel passenger buses including 1 car travelling in 1 direction (/1 direction), 14 cars / 1 direction, 1 bus / 1 direction, 28 cars / 2 directions, 24 cars and 2 buses / 2 directions, and 20 cars and 4 buses / 2 directions. It was found that the total emissions produced during stopping on a red signal were significantly higher than when the traffic moved at a steady speed. Overall, total emissions due to the interruption of the traffic increased by a factor of 13, 11, 45, 11, 41, and 43 for the above 6 cases, respectively. In summary, this PhD thesis presents the results of a comprehensive study on particle number and mass concentration, together with particle size distribution, in a bus station transport microenvironment, influenced by bus flow rates, meteorological conditions and station design. Passenger spatial-temporal exposure to bus emitted particles was also assessed according to waiting time and location along the platform, as well as the contribution of exposure at the bus station to overall daily exposure. Due to the complexity of the interrupted traffic flow within the transport microenvironments, a unique CLSE model was also developed, which is capable of quantifying emission levels at critical locations within the transport microenvironment, for the purpose of evaluating passenger exposure and conducting simulations of vehicle emission dispersion. The application of the CLSE model at a pedestrian crossing also proved its applicability and simplicity for use in a real-world transport microenvironment.
Resumo:
Urban stormwater quality is multifaceted and the use of a limited number of factors to represent catchment characteristics may not be adequate to explain the complexity of water quality response to a rainfall event or site-to-site differences in stormwater quality modelling. This paper presents the outcomes of a research study which investigated the adequacy of using land use and impervious area fraction only, to represent catchment characteristics in urban stormwater quality modelling. The research outcomes confirmed the inadequacy of the use of these two parameters alone to represent urban catchment characteristics in stormwater quality prediction. Urban form also needs to be taken into consideration as it was found have an important impact on stormwater quality by influencing pollutant generation, build-up and wash-off. Urban form refers to characteristics related to an urban development such as road layout, spatial distribution of urban areas and urban design features.
Resumo:
The Lockyer Valley in southeast Queensland, Australia, hosts an economically significant alluvial aquifer system which has been impacted by prolonged drought conditions (~1997 to ~ 2009). Throughout this time, the system was under continued groundwater extraction, resulting in severe aquifer depletion. By 2008, much of the aquifer was at <30% of storage but some relief occurred with rains in early 2009. However, between December 2010 and January 2011, most of southeast Queensland experienced unprecedented flooding, which generated significant aquifer recharge. In order to understand the spatial and temporal controls of groundwater recharge in the alluvium, a detailed 3D lithological property model of gravels, sands and clays was developed using GOCAD software. The spatial distribution of recharge throughout the catchment was assessed using hydrograph data from about 400 groundwater observation wells screened at the base of the alluvium. Water levels from these bores were integrated into a catchment-wide 3D geological model using the 3D geological modelling software GOCAD; the model highlights the complexity of recharge mechanisms. To support this analysis, groundwater tracers (e.g. major and minor ions, stable isotopes, 3H and 14C) were used as independent verification. The use of these complementary methods has allowed the identification of zones where alluvial recharge primarily occurs from stream water during episodic flood events. However, the study also demonstrates that in some sections of the alluvium, rainfall recharge and discharge from the underlying basement into the alluvium are the primary recharge mechanisms of the alluvium. This is indicated by the absence of any response to the flood, as well as the observed old radiocarbon ages and distinct basement water chemistry signatures at these locations. Within the 3D geological model, integration of water chemistry and time-series displays of water level surfaces before and after the flood suggests that the spatial variations of the flood response in the alluvium are primarily controlled by the valley morphology and lithological variations within the alluvium. The integration of time-series of groundwater level surfaces in the 3D geological model also enables the quantification of the volumetric change of groundwater stored in the unconfined sections of this alluvial aquifer during drought and following flood events. The 3D representation and analysis of hydraulic and recharge information has considerable advantages over the traditional 2D approach. For example, while many studies focus on singular aspects of catchment dynamics and groundwater-surface water interactions, the 3D approach is capable of integrating multiple types of information (topography, geological, hydraulic, water chemistry and spatial) into a single representation which provides valuable insights into the major factors controlling aquifer processes.
Resumo:
Overcrowding of hospital Emergency Departments (EDs) in Australia is a complex issue of high public and professional prominence, resulted from a combination of increasing demands, increased complexity of care and Access Block. The aim of this study is to describe the distribution of the acuity and severity of current Queensland ED patients to better understand ED users...
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
Resumo:
Articular cartilage is a complex structure with an architecture in which fluid-swollen proteoglycans constrained within a 3D network of collagen fibrils. Because of the complexity of the cartilage structure, the relationship between its mechanical behaviours at the macroscale level and its components at the micro-scale level are not completely understood. The research objective in this thesis is to create a new model of articular cartilage that can be used to simulate and obtain insight into the micro-macro-interaction and mechanisms underlying its mechanical responses during physiological function. The new model of articular cartilage has two characteristics, namely: i) not use fibre-reinforced composite material idealization ii) Provide a framework for that it does probing the micro mechanism of the fluid-solid interaction underlying the deformation of articular cartilage using simple rules of repartition instead of constitutive / physical laws and intuitive curve-fitting. Even though there are various microstructural and mechanical behaviours that can be studied, the scope of this thesis is limited to osmotic pressure formation and distribution and their influence on cartilage fluid diffusion and percolation, which in turn governs the deformation of the compression-loaded tissue. The study can be divided into two stages. In the first stage, the distributions and concentrations of proteoglycans, collagen and water were investigated using histological protocols. Based on this, the structure of cartilage was conceptualised as microscopic osmotic units that consist of these constituents that were distributed according to histological results. These units were repeated three-dimensionally to form the structural model of articular cartilage. In the second stage, cellular automata were incorporated into the resulting matrix (lattice) to simulate the osmotic pressure of the fluid and the movement of water within and out of the matrix; following the osmotic pressure gradient in accordance with the chosen rule of repartition of the pressure. The outcome of this study is the new model of articular cartilage that can be used to simulate and study the micromechanical behaviours of cartilage under different conditions of health and loading. These behaviours are illuminated at the microscale level using the socalled neighbourhood rules developed in the thesis in accordance with the typical requirements of cellular automata modelling. Using these rules and relevant Boundary Conditions to simulate pressure distribution and related fluid motion produced significant results that provided the following insight into the relationships between osmotic pressure gradient and associated fluid micromovement, and the deformation of the matrix. For example, it could be concluded that: 1. It is possible to model articular cartilage with the agent-based model of cellular automata and the Margolus neighbourhood rule. 2. The concept of 3D inter connected osmotic units is a viable structural model for the extracellular matrix of articular cartilage. 3. Different rules of osmotic pressure advection lead to different patterns of deformation in the cartilage matrix, enabling an insight into how this micromechanism influences macromechanical deformation. 4. When features such as transition coefficient were changed, permeability (representing change) is altered due to the change in concentrations of collagen, proteoglycans (i.e. degenerative conditions), the deformation process is impacted. 5. The boundary conditions also influence the relationship between osmotic pressure gradient and fluid movement at the micro-scale level. The outcomes are important to cartilage research since we can use these to study the microscale damage in the cartilage matrix. From this, we are able to monitor related diseases and their progression leading to potential insight into drug-cartilage interaction for treatment. This innovative model is an incremental progress on attempts at creating further computational modelling approaches to cartilage research and other fluid-saturated tissues and material systems.
Resumo:
Automated process discovery techniques aim at extracting models from information system logs in order to shed light into the business processes supported by these systems. Existing techniques in this space are effective when applied to relatively small or regular logs, but otherwise generate large and spaghetti-like models. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. The result is a collection of process models -- each one representing a variant of the business process -- as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically by means of subprocess extraction. The proposed technique allows users to set a desired bound for the complexity of the produced models. Experiments on real-life logs show that the technique produces collections of models that are up to 64% smaller than those extracted under the same complexity bounds by applying existing trace clustering techniques.
Resumo:
In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.
Resumo:
Introduction: Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo (MC) methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the ‘gold standard’ for predicting dose deposition in the patient [1]. This project has three main aims: 1. To develop tools that enable the transfer of treatment plan information from the treatment planning system (TPS) to a MC dose calculation engine. 2. To develop tools for comparing the 3D dose distributions calculated by the TPS and the MC dose engine. 3. To investigate the radiobiological significance of any errors between the TPS patient dose distribution and the MC dose distribution in terms of Tumour Control Probability (TCP) and Normal Tissue Complication Probabilities (NTCP). The work presented here addresses the first two aims. Methods: (1a) Plan Importing: A database of commissioned accelerator models (Elekta Precise and Varian 2100CD) has been developed for treatment simulations in the MC system (EGSnrc/BEAMnrc). Beam descriptions can be exported from the TPS using the widespread DICOM framework, and the resultant files are parsed with the assistance of a software library (PixelMed Java DICOM Toolkit). The information in these files (such as the monitor units, the jaw positions and gantry orientation) is used to construct a plan-specific accelerator model which allows an accurate simulation of the patient treatment field. (1b) Dose Simulation: The calculation of a dose distribution requires patient CT images which are prepared for the MC simulation using a tool (CTCREATE) packaged with the system. Beam simulation results are converted to absolute dose per- MU using calibration factors recorded during the commissioning process and treatment simulation. These distributions are combined according to the MU meter settings stored in the exported plan to produce an accurate description of the prescribed dose to the patient. (2) Dose Comparison: TPS dose calculations can be obtained using either a DICOM export or by direct retrieval of binary dose files from the file system. Dose difference, gamma evaluation and normalised dose difference algorithms [2] were employed for the comparison of the TPS dose distribution and the MC dose distribution. These implementations are spatial resolution independent and able to interpolate for comparisons. Results and Discussion: The tools successfully produced Monte Carlo input files for a variety of plans exported from the Eclipse (Varian Medical Systems) and Pinnacle (Philips Medical Systems) planning systems: ranging in complexity from a single uniform square field to a five-field step and shoot IMRT treatment. The simulation of collimated beams has been verified geometrically, and validation of dose distributions in a simple body phantom (QUASAR) will follow. The developed dose comparison algorithms have also been tested with controlled dose distribution changes. Conclusion: The capability of the developed code to independently process treatment plans has been demonstrated. A number of limitations exist: only static fields are currently supported (dynamic wedges and dynamic IMRT will require further development), and the process has not been tested for planning systems other than Eclipse and Pinnacle. The tools will be used to independently assess the accuracy of the current treatment planning system dose calculation algorithms for complex treatment deliveries such as IMRT in treatment sites where patient inhomogeneities are expected to be significant. Acknowledgements: Computational resources and services used in this work were provided by the HPC and Research Support Group, Queensland University of Technology, Brisbane, Australia. Pinnacle dose parsing made possible with the help of Paul Reich, North Coast Cancer Institute, North Coast, New South Wales.
Resumo:
Cyclostationary models for the diagnostic signals measured on faulty rotating machineries have proved to be successful in many laboratory tests and industrial applications. The squared envelope spectrum has been pointed out as the most efficient indicator for the assessment of second order cyclostationary symptoms of damages, which are typical, for instance, of rolling element bearing faults. In an attempt to foster the spread of rotating machinery diagnostics, the current trend in the field is to reach higher levels of automation of the condition monitoring systems. For this purpose, statistical tests for the presence of cyclostationarity have been proposed during the last years. The statistical thresholds proposed in the past for the identification of cyclostationary components have been obtained under the hypothesis of having a white noise signal when the component is healthy. This need, coupled with the non-white nature of the real signals implies the necessity of pre-whitening or filtering the signal in optimal narrow-bands, increasing the complexity of the algorithm and the risk of losing diagnostic information or introducing biases on the result. In this paper, the authors introduce an original analytical derivation of the statistical tests for cyclostationarity in the squared envelope spectrum, dropping the hypothesis of white noise from the beginning. The effect of first order and second order cyclostationary components on the distribution of the squared envelope spectrum will be quantified and the effectiveness of the newly proposed threshold verified, providing a sound theoretical basis and a practical starting point for efficient automated diagnostics of machine components such as rolling element bearings. The analytical results will be verified by means of numerical simulations and by using experimental vibration data of rolling element bearings.
Resumo:
The reliable operation of distribution systems is critically dependent on detailed understanding of load impacts on distribution transformer insulation systems. This paper estimates the impact of rooftop photovoltaic (PV) generation on a typical 200-kVA, 22/0.415-kV distribution transformer life under different operating conditions. This transformer supplies a suburban area with a high penetration of roof top photovoltaic systems. The transformer loads and the phase distribution of the PV systems are significantly unbalanced. Oil and hot-spot temperature and remnant life of distribution transformer under different PV and balance scenarios are calculated. It is shown that PV can significantly extend the transformer life.