370 resultados para Complex reality
Resumo:
The outcomes of a two-pronged 'real-world' learning project, which aimed to expand the views of pre-service teachers about learning, pedagogy and diversity, will be discussed in this paper. Seventy-two fourth-year and 22 first-year students, enrolled in a Bachelor of Education degree in Queensland, Australia, were engaged in community sites outside of university lectures, and separate from their practicum. Using Butin's conceptual framework for service learning, we show evidence that this approach can enable pre-service teachers to see new realities about the dilemmas and ambiguities of performing as learners and as teachers. We contend that when such 'real-world' experiences have different foci at different times in their four-year degree, pre-service teachers have more opportunities to develop sophisticated understandings of pedagogy in diverse contexts for diverse learners.
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
BIM (Building Information Modelling) is an approach that involves applying and maintaining an integral digital representation of all building information for different phases of the project lifecycle. This paper presents an analysis of the current state of BIM in the industry and a re-assessment of its role and potential contribution in the near future, given the apparent slow rate of adoption by the industry. The paper analyses the readiness of the building industry with respect to the product, processes and people to present an argument on where the expectations from BIM and its adoption may have been misplaced. This paper reports on the findings from: (1) a critical review of latest BIM literature and commercial applications, and (2) workshops with focus groups on changing work-practice, role of technology, current perceptions and expectations of BIM.
Resumo:
This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.
Resumo:
Traditionally, the aquisition of skills and sport movement has been characterised by numerous repetitions of presumed model movement pattern to be acquired by learners. This approach has been questioned by research identifying the presence of individualised movement patterns and the low probability of occurrence of two identical movements within and between individuals. In contrast, the differential learning approach claims advantage for incurring variability in the learning process by adding stochastic perturbations during practice. These ideas are exemplified by data from a high jump experiment which compared the effectiveness of classical and a differential training approach with pre-post test design. Results showed clear advantages for the group with additional stochastic perturbation during the aquisition phase in comparison to classically trained athletes. Analogies to similar phenomenological effects in the neurobiological literature are discussed.
Resumo:
In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.
Resumo:
This paper examines the enabling effect of using blended learning and synchronous internet mediated communication technologies to improve learning and develop a Sense of Community (SOC) in a group of post-graduate students consisting of a mix of on-campus and off-campus students. Both quantitative and qualitative data collected over a number of years supports the assertion that the blended learning environment enhanced both teaching and learning. The development of a SOC was pivotal to the success of the blended approach when working with geographically isolated groups within a single learning environment.
Resumo:
Since at least the 1960s, art has assumed a breadth of form and medium as diverse as social reality itself. Where once it was marginal and transgressive for artists to work across a spectrum of media, today it is common practice. In this ‘post-medium’ age, fidelity to a specific branch of media is a matter of preference, rather than a code of practice policed by gallerists, curators and critics. Despite the openness of contemporary art practice, the teaching of art at most universities remains steadfastly discipline-based. Discipline-based art teaching, while offering the promise of focussed ‘mastery’ of a particular set of technical skills and theoretical concerns, does so at the expense of a deeper and more complex understanding of the possibilities of creative experimentation in the artist’s studio. By maintaining an hermetic approach to medium, it does not prepare students sufficiently for the reality of art making in the twenty-first century. In fact, by pretending that there is a select range of techniques fundamental to the artist’s trade, discipline-based teaching can often appear to be more engaged with the notion of skills preservation than purposeful art training. If art schools are to survive and prosper in an increasingly vocationally-oriented university environment, they need to fully synthesise the professional reality of contemporary art practice into their approach to teaching and learning. This paper discusses the way in which the ‘open’ studio approach to visual art study at QUT endeavours to incorporate the diversity and complexity of contemporary art while preserving the sense of collective purpose that discipline-based teaching fosters. By allowing students to independently develop their own art practices while also applying collaborative models of learning and assessment, the QUT studio program aims to equip students with a strong sense of self-reliance, a broad awareness and appreciation of contemporary art, and a deep understanding of studio-based experimentation unfettered by the boundaries of traditional media: all skills fundamental to the practice of contemporary art.
Resumo:
When complex projects go wrong they can go horribly wrong with severe financial consequences. We are undertaking research to develop leading performance indicators for complex projects, metrics to provide early warning of potential difficulties. The assessment of success of complex projects can be made by a range of stakeholders over different time scales, against different levels of project results: the project’s outputs at the end of the project; the project’s outcomes in the months following project completion; and the project’s impact in the years following completion. We aim to identify leading performance indicators, which may include both success criteria and success factors, and which can be measured by the project team during project delivery to forecast success as assessed by key stakeholders in the days, months and years following the project. The hope is the leading performance indicators will act as alarm bells to show if a project is diverting from plan so early corrective action can be taken. It may be that different combinations of the leading performance indicators will be appropriate depending on the nature of project complexity. In this paper we develop a new model of project success, whereby success is assessed by different stakeholders over different time frames against different levels of project results. We then relate this to measurements that can be taken during project delivery. A methodology is described to evaluate the early parts of this model. Its implications and limitations are described. This paper describes work in progress.
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
Do commencing students possess the level of information literacy (IL) knowledge and skills they need to succeed at university? What impact does embedding IL within the engineering and design curriculum have? This paper reports on the self-perception versus the reality of IL knowledge and skills, across a large cohort of first year built environment and engineering students. Acting on the findings of this evaluation, the authors (a team of academic librarians) developed an intensive IL skills program which was integrated into a faculty wide unit. Perceptions, knowledge and skills were re-evaluated at the end of the semester to determine if embedded IL education made a difference. Findings reveal that both the perception and reality of IL skills were significantly and measurably improved.
Resumo:
Review of '25 Down', Queensland Theatre Company, published in The Australian, 15 June 2009.