451 resultados para Communication channel
Resumo:
Two dimensional flow of a micropolar fluid in a porous channel is investigated. The flow is driven by suction or injection at the channel walls, and the micropolar model due to Eringen is used to describe the working fluid. An extension of Berman's similarity transform is used to reduce the governing equations to a set of non-linear coupled ordinary differential equations. The latter are solved for large mass transfer via a perturbation analysis where the inverse of the cross-flow Reynolds number is used as the perturbing parameter. Complementary numerical solutions for strong injection are also obtained using a quasilinearisation scheme, and good agreement is observed between the solutions obtained from the perturbation analysis and the computations.
Resumo:
Communications are important for relationships within a marketing channel from both a theoretical and managerial perspective. Yet it is a problematic area for scholars. Thus, this research addresses the problem of how do customers of a financial services institution perceive communications with an ideal institution? This study's case research methodology used in-depth interviews with 34 carefully selected customers of a building society. The factors that make up customers' attitudes about corporate communications for an ideal financial services institution were identified and actual perceptions were compared against that ideal. The findings confirmed the importance of communications for customers in a relationship with a financial services provider and suggested communication priorities for customers in this context. In addition, the findings suggested sources of communication dissatisfaction for customers. These findings build upon the literature that speculates about customer perceptions of communications with organizations but provides little evidence to support hypotheses. The contributions arose from the emphasis on the customers' own attitudes and the patterns found within them.
Resumo:
Networked control over data networks has received increasing attention in recent years. Among many problems in networked control systems (NCSs) is the need to reduce control latency and jitter and to deal with packet dropouts. This paper introduces our recent progress on a queuing communication architecture for real-time NCS applications, and simple strategies for dealing with packet dropouts. Case studies for a middle-scale process or multiple small-scale processes are presented for TCP/IP based real-time NCSs. Variations of network architecture design are modelled, simulated, and analysed for evaluation of control latency and jitter performance. It is shown that a simple bandwidth upgrade or adding hierarchy does not necessarily bring benefits for performance improvement of control latency and jitter. A co-design of network and control is necessary to maximise the real-time control performance of NCSs