87 resultados para Cloud Fraction
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
CI chondrites are used pervasively in the meteorite literature as a cosmochemical reference point for bulk compositions[1], isotope analyses[2] and, within certain models of meteorite evolution, as an important component of an alteration sequence within the carbonaceous chondrite subset[3]. More recently, the chemical variablity of CI chondrite matrices (which comprise >80% of the meteorite), has been cited in discussions about the "chondritic" nature of spectroscopic data from P/comet Halley missions[4] and of chemical data from related materials such as interplanetary dust particles[5]. Most CI chondrites have been studied as bulk samples(e.g. major and trace element abundances)and considerable effort has also been focussed on accessory phases such as magnetites, olivine, sulphates and carbonates [6-8]. A number of early studies showed that the primary constituents of CI matrices are layer silicates and the most definitive structural study on powdered samples identified two minerals: montmorillonite and serpentine[9]. In many cases, as with the study by Bass[9],the relative scarcity of most CI chondrites restricts such bulk analyses to the Orgueil meteorite. The electron microprobe/SEM has been used on petrographic sections to more precisely define the "bulk" composition of at least four CI matrices[3], and as recently summarised by McSween[3], these data define a compositional trend quite different to that obtained for CM chondrite matrices. These "defocussed-beam" microprobe analyses average major element compositions over matrix regions ~lOOµm in diameter and provide only an approximation to silicate mineral composition(s) because their grain sizes are much less than the diameter of the beam. In order to (a) more precisely define the major element compositions of individual mineral grains within CI matrices, and (b)complement previous TEM studies [11,12], we have undertaken an analytical electron microscopy (AEM) study of Alais and Orgueil matrices.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology (IT) infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry’s technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry’s services to be offered through cloud-based “apps.”
Resumo:
With the widespread application of healthcare Information and Communication Technology (ICT), constructing a stable and sustainable data sharing circumstance has attracted rapidly growing attention in both academic research area and healthcare industry. Cloud computing is one of long dreamed visions of Healthcare Cloud (HC), which matches the need of healthcare information sharing directly to various health providers over the Internet, regardless of their location and the amount of data. In this paper, we discuss important research tool related to health information sharing and integration in HC and investigate the arising challenges and issues. We describe many potential solutions to provide more opportunities to implement EHR cloud. As well, we introduce the development of a HC related collaborative healthcare research example, thus illustrating the prospective of applying Cloud Computing in the health information science research.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
Model calculations, which include the effects of turbulence during subsequent solar nebula evolution after the collapse of a cool interstellar cloud, can reconcile some of the apparent differences between physical parameters obtained from theory and the cosmochemical record. Two important aspects of turbulence in a protoplanetary cloud include the growth and transport of solid grains. While the physical effects of the process can be calculated and compared with the probable remains of the nebula formulation period, the more subtle effects on primitive grains and their survival in the cosmochemical record cannot be readily evaluated. The environment offered by the Space Station (or Space Shuttle) experimental facility can provide the vacuum and low gravity conditions for sufficiently long time periods required for experimental verification of these cosmochemical models.
Resumo:
"The music industry is going through a period of immense change brought about in part by the digital revolution. What is the role of music in the age of computers and the internet? How has the music industry been transformed by the economic and technological upheavals of recent years, and how is it likely to change in the future? This is the first major study of the music industry in the new millennium. Wikström provides an international overview of the music industry and its future prospects in the world of global entertainment. He illuminates the workings of the music industry, and captures the dynamics at work in the production of musical culture between the transnational media conglomerates, the independent music companies and the public." -- back cover Table of Contents Introduction: Music in the Cloud Chapter 1: A Copyright Industry. Chapter 2: Inside the Music Industry Chapter 3: Music and the Media Chapter 4: Making Music - An Industrial or Creative Process Chapter 5: The Social and Creative Music Fan Chapter 6: Future Sounds
Resumo:
The main theme of this thesis is to allow the users of cloud services to outsource their data without the need to trust the cloud provider. The method is based on combining existing proof-of-storage schemes with distance-bounding protocols. Specifically, cloud customers will be able to verify the confidentiality, integrity, availability, fairness (or mutual non-repudiation), data freshness, geographic assurance and replication of their stored data directly, without having to rely on the word of the cloud provider.
Resumo:
Retaining customers is a relevant topic throughout all service industries. However, only limited attention has been directed towards studying the antecedents of subscription renewal in the context of operational cloud enterprise systems. Cloud services have historically been offered as subscription-based services with the (theoretical) possibility of seamless service cancellation, in contrast to classical IT-Outsourcing contracts or license-based software installations of on-premise enterprise systems. In this work, we investigate the central concept of subscription renewal by focusing on different facets of IS success and their relevance for distinct employee cohorts. Analyzing inter-cohort differences has strong practical implications, as it helps IT vendors to focus on specific IT-related factors when trying to retain customers. Therefore an empirical study was undertaken. The hypotheses were developed on an individual level and tested using survey responses of IT decision makers within companies which adopted cloud enterprise systems. Gathered data was then analyzed using PLS. The results show that subscription renewal intention of the strategic cohort is mainly based on perceived system quality, whereas information quality explains most of the variance of subscription renewal in the management cohort. Beneath the cloud enterprise systems specific contributions, the work adds to the theoretical body of research related to IS success and IS continuation, as well as stakeholder perspectives.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
In this research, we suggest appropriate information technology (IT) governance structures to manage the cloud computing resources. The interest in acquiring IT resources a utility is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to ensure its effective management and fit into existing business processes to leverage the promised opportunities. Using a mixed method design, we identified four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. These governance structures ensure appropriate direction of cloud computing resources from its acquisition to fit into the organizations business processes.
Resumo:
This research suggests information technology (IT) governance structures to manage cloud computing resources. The interest in acquiring IT resources as a utility from the cloud is gaining momentum. Cloud computing resources present organizations with opportunities to manage their IT expenditure on an ongoing basis, and are providing organizations access to modern IT resources to innovate and manage their continuity. However, cloud computing resources are no silver bullet. Organizations would need to have appropriate governance structures and policies in place to manage the cloud resources. The subsequent decisions from these governance structures will ensure effective management of cloud resources. This management will facilitate a better fit of cloud resources into organizations existing processes to achieve business (process-level) and financial (firm-level) objectives. Using a triangulation approach, we suggest four possible governance structures for managing the cloud computing resources. These structures are a chief cloud officer, a cloud management committee, a cloud service facilitation centre, and a cloud relationship centre. We also propose that these governance structures would relate to organizations cloud-related business objectives directly and indirectly to cloud-related financial objectives. Perceptive field survey data from actual and prospective cloud service adopters confirmed that the suggested structures would contribute directly to cloud-related business objectives and indirectly to cloud-related financial objectives.
Resumo:
The purpose of this paper is to provide an evolutionary perspective of cloud computing (CC) by integrating two previously disparate literatures: CC and information technology outsourcing (ITO). We review the literature and develop a framework that highlights the demand for the CC service, benefits, risks, as well as risk mitigation strategies that are likely to influence the success of the service. CC success in organisations and as a technology overall is a function of (i) the outsourcing decision and supplier selection, (ii) contractual and relational governance, and (iii) industry standards and legal framework. Whereas CC clients have little control over standards and/or the legal framework, they are able to influence other factors to maximize the benefits while limiting the risks. This paper provides guidelines for (potential) cloud computing users with respect to the outsourcing decision, vendor selection, service-level-agreements, and other issues that need to be addressed when opting for CC services. We contribute to the literature by providing an evolutionary and holistic view of CC that draws on the extensive literature and theory of ITO. We conclude the paper with a number of research paths that future researchers can follow to advance the knowledge in this field.
Resumo:
The topic of “the cloud” has attracted significant attention throughout the past few years (Cherry 2009; Sterling and Stark 2009) and, as a result, academics and trade journals have created several competing definitions of “cloud computing” (e.g., Motahari-Nezhad et al. 2009). Underpinning this article is the definition put forward by the US National Institute of Standards and Technology, which describes cloud computing as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction” (Garfinkel 2011, p. 3). Despite the lack of consensus about definitions, however, there is broad agreement on the growing demand for cloud computing. Some estimates suggest that spending on cloudrelated technologies and services in the next few years may climb as high as USD 42 billion/year (Buyya et al. 2009).