415 resultados para Clinical performance
Resumo:
Aims: This paper describes the development of a risk adjustment (RA) model predictive of individual lesion treatment failure in percutaneous coronary interventions (PCI) for use in a quality monitoring and improvement program. Methods and results: Prospectively collected data for 3972 consecutive revascularisation procedures (5601 lesions) performed between January 2003 and September 2011 were studied. Data on procedures to September 2009 (n = 3100) were used to identify factors predictive of lesion treatment failure. Factors identified included lesion risk class (p < 0.001), occlusion type (p < 0.001), patient age (p = 0.001), vessel system (p < 0.04), vessel diameter (p < 0.001), unstable angina (p = 0.003) and presence of major cardiac risk factors (p = 0.01). A Bayesian RA model was built using these factors with predictive performance of the model tested on the remaining procedures (area under the receiver operating curve: 0.765, Hosmer–Lemeshow p value: 0.11). Cumulative sum, exponentially weighted moving average and funnel plots were constructed using the RA model and subjectively evaluated. Conclusion: A RA model was developed and applied to SPC monitoring for lesion failure in a PCI database. If linked to appropriate quality improvement governance response protocols, SPC using this RA tool might improve quality control and risk management by identifying variation in performance based on a comparison of observed and expected outcomes.
Resumo:
This thesis explored the development of statistical methods to support the monitoring and improvement in quality of treatment delivered to patients undergoing coronary angioplasty procedures. To achieve this goal, a suite of outcome measures was identified to characterise performance of the service, statistical tools were developed to monitor the various indicators and measures to strengthen governance processes were implemented and validated. Although this work focused on pursuit of these aims in the context of a an angioplasty service located at a single clinical site, development of the tools and techniques was undertaken mindful of the potential application to other clinical specialties and a wider, potentially national, scope.
Resumo:
Background Selection of candidates for clinical psychology programmes is arguably the most important decision made in determining the clinical psychology workforce. However, there are few models to inform the development of selection tools to support selection procedures. The study, using a factor analytic structure, has operationalised the model predicting applicants' capabilities. Method Eighty-eight clinical applicants for entry into a postgraduate clinical psychology programme were assessed on a series of tasks measuring eight capabilities: guided reflection, communication skills, ethical decision making, writing, conceptual reasoning, empathy, and awareness of mind and self-observation. Results Factor analysis revealed three capabilities: labelled “awareness” accounting for 35.71% of variance; “reflection” accounting for 20.56%; and “reasoning” accounting for 18.24% of variance. Fourth year grade point average (GPA) did not correlate with performance on any of the selection capabilities other than a weak correlation with performance on the ethics capability. Conclusions Eight selection capabilities are identified for the selection of candidates independent of GPA. While the model is tentative, it is hoped that the findings will stimulate the development and validation of assessment procedures with good predictive validity which will benefit the training of clinical psychologists and, ultimately, effective service delivery.
Resumo:
Based on promising preclinical efficacy of bortezomib in mesothelioma, a single-arm phase II trial (Ireland Cooperative Oncology Research Group 05-10 study), with Simon's two-stage design, was undertaken to assess efficacy of bortezomib monotherapy in the first-line (poor performance status) and second-line settings. The Bcl-2 homology domain 3-only protein Noxa has been implicated as a key inducer of apoptosis by bortezomib. Thus, in a biomarker research substudy, we hypothesized that deficiency in Noxa expression might correlate with resistance. In the second-line setting, 23 patients were enrolled. Partial response was confirmed in one patient (4.8%) who received four cycles of bortezomib. One patient had stable disease; however, progression occurred in the majority of patients within the first two cycles. Median progression-free survival and overall survival were 2.1 and 5.8 months, respectively. In the first-line setting, ten patients were accrued, and there was no evidence of objective response. In the tumor analysis, expression of Noxa was seen in all biopsies. Bortezomib monotherapy exhibits insufficient activity to warrant further investigation in unselected patients with mesothelioma. © 2012 by the International Association for the Study of Lung.
Resumo:
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Resumo:
Chronic physical inactivity is a major risk factor for a number of important lifestyle diseases, while inappropriate exposure to high physical demands is a risk factor for musculoskeletal injury and fatigue. Proteomic and metabolomic investigations of the physical activity continuum - extreme sedentariness to extremes in physical performance - offer increasing insight into the biological impacts of physical activity. Moreover, biomarkers, revealed in such studies, may have utility in the monitoring of metabolic and musculoskeletal health or recovery following injury. As a diagnostic matrix, urine is non-invasive to collect and it contains many biomolecules, which reflect both positive and negative adaptations to physical activity exposure. This review examines the utility and landscape of biomarkers of physical activity with particular reference to those found in urine.
Resumo:
Aims The Medical Imaging Training Immersive Environment (MITIE) system is a recently developed virtual reality (VR) platform that allows students to practice a range of medical imaging techniques. The aim of this pilot study was to harvest user feedback about the educational value of the application and inform future pedagogical development. This presentation explores the use of this technology for skills training and blurring the boundaries between academic learning and clinical skills training. Background MITIE is a 3D VR environment that allows students to manipulate a patient and radiographic equipment in order to produce a VR-generated image for comparison with a gold standard. As with VR initiatives in other health disciplines (1-6) the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia “Simulated Learning Environments” grant. Methods Over 80 students undertaking the Bachelor of Medical Imaging Course were randomised to receive practical experience with either MITIE or radiographic equipment in the medical radiation laboratory. Student feedback about the educational value of the software was collected and performance with an assessed setup was measured for both groups for comparison. Ethical approval for the project was provided by the university ethics panel. Results This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value as well as comparative quantitative performance data. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application’s significance as a pre-clinical training tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either during their academic timetables or their clinical placement. Conclusion Student feedback and performance data indicate that MITIE has a valuable role to play in the clinical skills training for medical imaging students both in the academic and the clinical environment. Future work will establish a framework for an appropriate supporting pedagogy that can cross the boundary between the two environments. This project was possible due to funding made available by Health Workforce Australia.
Resumo:
Purpose:Multifocal contact lenses (MCLs) have been available for decades. A review of the literature suggests that while, historically, these lenses have been partially successful, they have struggled to compete with monovision (MV). More recent publications suggest that there has been an improvement in the performance of these lenses. This study set out to investigate whether the apparent improved lens performance reported in the literature is reflected in clinical practice. Methods:Data collected over the last 5yrs via the International Contact Lens Prescribing Survey Consortium was reviewed for patients over the age of 45yrs. The published reports of clinical trials were reviewed to assess lens performance over the time period. Results:Data review was of 16,680 presbyopic lens fits in 38 countries. The results are that 29% were fit with MCLs, 8% MV and 63% single vision (SV). A previous survey conducted in Australia during 1988-89 reported that 9% of presbyopes were fit with MCLs, 29% MV and 63% SV. The results from our survey for Australia alone were 28% (MV 13%) vs 9% (MV 29%) suggesting an increase in usage of MCLs from 1988-89 to 2010. A review of the literature indicates the reported level of visual acuities with MCLs in comparison to MV has remained equivalent over this time period, yet preference has switch from MV to MCLs. Conclusions:There is evidence that currently more MCLs than MV are being fit to presbyopes, compared to 1988-89. This increased use is likely due to the improved visual performance of these lenses, which is not demonstrated with acuity measures but reported by wearers, suggesting that patient-based subjective ratings are currently the best way to measure visual performance.
Resumo:
Creating an authentic assessment which at once assesses competencies, scene management, communication and overall patient care is challenging in the competitive tertiary education market. Increasing student numbers and the cost of evaluating scenario based competencies serve to ensure the need for consistent objectivity and need for timely feedback to students on their performance. Objective structured clinical examination (OSCE) is currently the most flexible approach to competency based formative and summative assessment and widely used within paramedic degree programs. Students are understandably compelled to perform well and can be frustrated by not receiving timely and appropriate feedback. Increasingly a number of products aimed at providing a more efficient and paperless approach have begun to enter the market. These products, it is suggested are aimed at medicine programs and not at allied health professions and limited to one operating system and therefore ignore issues surrounding equity and accessibility. OSCE Online aims to address this gap in the market and is tailored to these disciplines. The application will provide a service that can be both tailored and standardised from a pre-written bank, depending upon requirement to fit around the needs of clinical competency assessment. Delivering authentic assessments to address student milestones in their training to become paramedics is the cornerstone of OSCE Online. By not being restricted to a specific device it will address issues of functionality, adaptability, accessibility, authenticity and importantly: transparency and accountability by producing contemporaneous data allowing issues to be easily identified and rectified.
Improving the performance of nutrition screening through a series of quality improvement initiatives
Resumo:
Background Nutrition screening identifies patients at risk of malnutrition to facilitate early nutritional intervention. Studies have reported incompletion and error rates of 30-90% for a range of commonly used screening tools. This study aims to investigate the incompletion and error rates of 3-Minute Nutrition Screening (3-MinNS) and the effect of quality improvement initiatives in improving the overall performance of the screening tool and the referral process for at risk patients. Methods Annual audits were carried out from 2008-2013 on 4467 patients. Value Stream Mapping, Plan-Do-Check-Act cycle and Root Cause Analysis were used in this study to identify gaps and determine the best intervention. The intervention included 1) implementing a nutrition screening protocol, 2) nutrition screening training, 3) nurse empowerment for online dietetics referral of at-risk cases, 4) closed-loop feedback system and 5) removing a component of 3-MinNS that caused the most error without compromising its sensitivity and specificity. Results Nutrition screening error rates were 33% and 31%, with 5% and 8% blank or missing forms, in 2008 and 2009 respectively. For patients at risk of malnutrition, referral to dietetics took up to 7.5 days, with 10% not referred at all. After intervention, the latter decreased to 7% (2010), 4% (2011) and 3% (2012 and 2013), and the mean turnaround time from screening to referral was reduced significantly from 4.3 ± 1.8 days to 0.3 ± 0.4 days (p < 0.001). Error rates were reduced to 25% (2010), 15% (2011), 7% (2012) and 5% (2013) and percentage of blank or missing forms reduced to and remained at 1%. Conclusion Quality improvement initiatives are effective in reducing the incompletion and error rates of nutrition screening, and led to sustainable improvements in the referral process of patients at nutritional risk.
Resumo:
Introduction Well-designed biodegradable scaffolds in combination with bone growth factors offer a valuable alternative to the current gold standard autograft in spinal fusion surgery Yong et al. (2013). Here we report on 6- vs 12- month data set evaluating the longitudinal performance of a CaP coated polycaprolactone (PCL) scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within a large preclinical animal model. Methods Twelve sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion assessments were performed via high resolution clinical computed tomography and histological evaluation were undertaken at six (n=6) and twelve (n=6) months post-surgery using the Sucato grading system (Sucato et al. 2004). Results The computed tomography fusion grades of the 6- and 12- months in the rhBMP-2 plus PCL- based scaffold group were 1.9 and 2.1 respectively, in the autograft group 1.9 and 1.3 respectively, and in the scaffold alone group 0.9 and 1.17 respectively. There were no statistically significant differences in the fusion scores between 6- and 12- month for the rhBMP plus PCL- based scaffold or PCL – based scaffold alone group however there was a significant reduction in scores in the autograft group. These scores were seen to correlate with histological evaluations of the respective groups. Conclusions The results of this study demonstrate the efficacy of scaffold-based delivery of rhBMP-2 in promoting higher fusion grades at 6- and 12- months in comparison to the scaffold alone or autograft group within the same time frame. Fusion grades achieved at six months using PCL+rhBMP-2 are not significantly increased at twelve months post-surgery.
Resumo:
Hydroxyapatite (HA) coatings have numerous applications in orthopedics and dentistry, owing to their excellent ability to promote stronger implant fixation and faster bone tissue ingrowth and remodeling. Thermal plasma spray and other plasma-assisted techniques have recently been used to synthesize various calcium phosphate-based bioceramics. Despite notable recent achievements in the desired stoichiometry, phase composition, mechanical, structural, and bio-compatible properties, it is rather difficult to combine all of the above features in a single coating. For example, many existing plasma-sprayed HA coatings fall short in meeting the requirements of grain size and crystallinity, and as such are subject to enhanced resorption in body fluid. On the other hand, relatively poor interfacial bonding and stability is an obstacle to the application of the HA coatings in high load bearing Ti6Al4V knee joint implants. Here, we report on an alternative: a plasma-assisted, concurrent, sputtering deposition technique for high performance biocompatible HA coatings on Ti6Al4V implant alloy. The plasma-assisted RF magnetron co-sputtering deposition method allows one to simultaneously achieve most of the desired attributes of the biomimetic material and overcome the aforementioned problems. This article details the film synthesis process specifications, extensive analytical characterization of the material's properties, mechanical testing, simulated body fluid assessments, biocompatibility and cytocompatibility of the HA-coated Ti6Al4V orthopedic alloy. The means of optimization of the plasma and deposition process parameters to achieve the desired attributes and performance of the HA coating, as well as future challenges in clinical applications are also discussed.
Resumo:
Intense exercise induced acidosis occurs after accumulation of hydrogen ions as by-products of anaerobic metabolism. Oral ingestion of ß-alanine, a limiting precursor of the intracellular physiochemical buffer carnosine in skeletal muscle, may counteract detrimental effects of acidosis and benefit performance. This study aimed to investigate the effect of ß-alanine as an ergogenic aid during high intensity exercise performance. Five healthy males ingested either ß-alanine or placebo (Pl) (CaCO3) in a crossover design with 6 wk washout between. Participants performed two different intense exercise protocols over consecutive days. On the first day a repeated sprint ability (RSA) test was performed. On the second day a cycling capacity test measuring the time to exhaustion (TTE) was performed at 110% of maximum workload achieved in a pre supplementation max test (CCT110%). Non-invasive quantification of carnosine, prior to, and following each supplementation, with in vivo magnetic resonance spectrometry was performed in the soleus and gastrocnemius muscle. Time to fatigue (CCT110%), peak and mean power (RSA), blood pH, and plasma lactate were measured. Muscle carnosine concentration was not different prior to ß-alanine supplementation and increased 18% in the soleus and 26% in the gastrocnemius, respectively after supplementation. There was no difference in the measured performance variables during the RSA test (peak and average power output). TTE during the CCT110% was significantly enhanced following the ingestion of BAl (155s ± 19.03) compared to Pl (134s ± 26.16). No changes were observed in blood pH during either exercise protocol and during the recovery from exercise. Plasma lactate after BAI was significantly higher than Pl only from the 15th minute following exercise during the CCT110%. Greater muscle carnosine content following 6wk supplementation of ß-alanine enhanced the potential for intracellular buffering capacity. This translated into enhanced performance during the CCT110% high intensity cycling exercise protocol but not during the RSA test. The lack of change in plasma lactate or blood pH indicates that 6wks ß-alanine supplementation has no effect on anaerobic metabolism during multiple-bout high-intensity exercise. Changes measured in plasma lactate during recovery support the hypothesis that ß-alanine supplementation may affect anaerobic metabolism particularly during single bout high intensity.
Resumo:
BACKGROUND: Effective diagnosis of malaria is a major component of case management. Rapid diagnostic tests (RDTs) based on Plasmodium falciparumhistidine-rich protein 2 (PfHRP2) are popular for diagnosis of this most virulent malaria infection. However, concerns have been raised about the longevity of the PfHRP2 antigenaemia following curative treatment in endemic regions. METHODS: A model of PfHRP2 production and decay was developed to mimic the kinetics of PfHRP2 antigenaemia during infections. Data from two human infection studies was used to fit the model, and to investigate PfHRP2 kinetics. Four malaria RDTs were assessed in the laboratory to determine the minimum detectable concentration of PfHRP2. RESULTS: Fitting of the PfHRP2 dynamics model indicated that in malaria naive hosts, P. falciparum parasites of the 3D7 strain produce 1.4 x 10(-)(1)(3) g of PfHRP2 per parasite per replication cycle. The four RDTs had minimum detection thresholds between 6.9 and 27.8 ng/mL. Combining these detection thresholds with the kinetics of PfHRP2, it is predicted that as few as 8 parasites/muL may be required to maintain a positive RDT in a chronic infection. CONCLUSIONS: The results of the model indicate that good quality PfHRP2-based RDTs should be able to detect parasites on the first day of symptoms, and that the persistence of the antigen will cause the tests to remain positive for at least seven days after treatment. The duration of a positive test result following curative treatment is dependent on the duration and density of parasitaemia prior to treatment and the presence and affinity of anti-PfHRP2 antibodies.