87 resultados para Cholinergic Fibers
Resumo:
We present experimental and theoretical results of the intensity dependence of residual amplitude modulation (RAM) production in electro-optic phase modulators. By utilizing the anisotropy of the medium, we show that RAM has a photorefractive origin.
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
Resumo:
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0◦ to 90◦. The corresponding diffusion ellipsoids are prolate for θ < θMA, spherical for θ ≈ θMA, and oblate for θ > θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Resumo:
To develop a rapid optimized technique of wide-field imaging of the human corneal subbasal nerve plexus. A dynamic fixation target was developed and, coupled with semiautomated tiling software, a rapid method of capturing and montaging multiple corneal confocal microscopy images was created. To illustrate the utility of this technique, wide-field maps of the subbasal nerve plexus were produced in 2 participants with diabetes, 1 with and 1 without neuropathy. The technique produced montages of the central 3 mm of the subbasal corneal nerve plexus. The maps seem to show a general reduction in the number of nerve fibers and branches in the diabetic participant with neuropathy compared with the individual without neuropathy. This novel technique will allow more routine and widespread use of subbasal nerve plexus mapping in clinical and research situations. The significant reduction in the time to image the corneal subbasal nerve plexus should expedite studies of larger groups of diabetic patients and those with other conditions affecting nerve fibers. The inferior whorl and the surrounding areas may show the greatest loss of nerve fibers in individuals with diabetic neuropathy, but this should be further investigated in a larger cohort.
Resumo:
Fibroin extracted from silkworm cocoon silk provides an intriguing and potentially important biomaterial for corneal reconstruction. In the present chapter we outline our methods for producing a composite of two fibroin-based materials that supports the co-cultivation of human limbal epithelial (HLE) cells and human limbal stromal (HLS) cells. The resulting tissue substitute consists of a stratified epithelium overlying a three-dimensional arrangement of extracellular matrix components (principally ‘degummed’ fibroin fibers) and mesenchymal stromal cells. This tissue substitute is currently being evaluated as a tool for reconstructing the corneal limbus and corneal epithelium.
Resumo:
20.1 Epilepsy and an introduction to drugs used to treat 20.1.1 Introduction to epilepsy 20.1.2 Treatment of partial seizures 20.1.3 Treatment of generalised seizures 20.1.4 Treatment of status epilepticus 20.2 Neurodegenerative disorders; principles of treatment 20.2.1 Introduction to neurodegenerative disorders 20.2.2 Parkinson’s disease 20.2.2.1 Introduction to Parkinson’s disease 20.2.2.2 Dopaminergic system 20.2.2.3 Treatment to enhance the dopaminergic system 20.2.2.4 Treatment to inhibit the cholinergic system 20.2.3 Dementia/Alzheimer’s disease 20.2.3.1 Introduction to Alzheimer’s disease 20.2.3.2 Treatment of Alzheimer’s disease 20.2.4 Amyotrophic lateral sclerosis 43.4.1 Introduction 43.4.2 Treatment 20.3. Pain and opioid analgesics 20.3.1 Introduction to pain and analgesia 20.3.2 Introduction to opioids 20.3.3 Tolerance and physical dependence 20.3.4 Effects of opioids 20.3.5 Agonists at opioid μ receptors 20.3.6 Toxicity to opioids This section deals with the neurologic drugs. The neurologic drugs are used to treat epilepsy and neurodegenerative diseases such as Parkinson’s disease and Alzheimer’s disease. The opioids for pain management are also discussed in this section.
Resumo:
Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three different aligned nanofiber scaffolds composed of poly L: -lactic acid supplemented with either single- or multi-walled carbon-nanotubes. The addition of the nanotubes conferred conductivity to the nanofibers and promoted mESC neural differentiation as evidenced by an increased mature neuronal markers expression. We propose that the conductive scaffold could be a useful tool for the generation of neural tissue mimics in vitro and potentially as a scaffold for the repair of neural defects in vivo.
Resumo:
Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.
Resumo:
Melt electrospinning in a direct writing mode is a recent additive manufacturing approach to fabricate porous scaffolds for tissue engineering applications. In this study, we describe porous and cell-invasive poly (ε-caprolactone) scaffolds fabricated by combining melt electrospinning and a programmable x–y stage. Fibers were 7.5 ± 1.6 µm in diameter and separated by interfiber distances ranging from 8 to 133 µm, with an average of 46 ± 22 µm. Micro-computed tomography revealed that the resulting scaffolds had a highly porous (87%), three-dimensional structure. Due to the high porosity and interconnectivity of the scaffolds, a top-seeding method was adequate to achieve fibroblast penetration, with cells present throughout and underneath the scaffold. This was confirmed histologically, whereby a 3D fibroblast-scaffold construct with full cellular penetration was produced after 14 days in vitro. Immunohistochemistry was used to confirm the presence and even distribution of the key dermal extracellular matrix proteins, collagen type I and fibronectin. These results show that melt electrospinning in a direct writing mode can produce cell invasive scaffolds, using simple top-seeding approaches.
Resumo:
The acetylcholine receptor (AchR) antibody assay has a key role in the diagnosis of myasthenia gravis. In this article, the role of AchR antibody assay in the diagnosis of ocular and generalized myasthenia gravis is reviewed, and compared to standard means of diagnosing the disease by clinical and electrophysiological methods.
Resumo:
Results of 3 tests, intravenous edrophonium chloride, EMG, and acetylcholine receptor antibody testing, were compared in patients with generalised and ocular myasthenia gravis. None of the 3 tests was positive in any patient with a diagnosis other than myasthenia. However, equivocal results were obtained with edrophonium and EMG testing in some patients with myasthenia gravis and in patients with other diseases. It is concluded from this survey that antibody and edrophonium testing were equally efficient in detecting generalised myasthenia gravis. Edrophonium testing was superior in ocular myasthenia gravis. Although the yields from each test varied, all 3 tests were needed for the evaluation of some myasthenia gravis patients as each test may provide additional information.
Resumo:
The relationship of acetylcholine receptor (AchR) antibodies to disease activity in myasthenia gravis (MG) is controversial. Some authors claim a direct correlation with disease activity and treatment, in particular plasmapheresis therapy, whereas others have commented on the poor overall correlation of antibody levels with clinical state. Antibody levels were examined in a population of MG patients and correlated with disease activity and response to treatment. Antibodies to skeletal muscle AchR were found in most patients with generalised MG (24/25) and in about half of the patients with purely ocular MG (6/10) and in neither of 2 patients with congenital MG. There was scant correlation with disease activity or response to treatment. It is concluded that the assay is more useful for diagnosis than for management of MG.
Resumo:
Electrospun scaffolds manufactured using conventional electrospinning configurations have an intrinsic thickness limitation, due to a charge build-up at the collector. To overcome this limitation, an electrostatic lens has been developed that, at the same relative rate of deposition, focuses the polymer jet onto a smaller area of the collector, resulting in the fabrication of thick scaffolds within a shorter period of time. We also observed that a longer deposition time (up to 13 h, without the intervention of the operator) could be achieved when the electrostatic lens was utilised, compared to 9–10 h with a conventional processing set-up and also showed that fibre fusion was less likely to occur in the modified method. This had a significant impact on the mechanical properties, as the scaffolds obtained with the conventional process had a higher elastic modulus and ultimate stress and strain at short times. However, as the thickness of the scaffolds produced by the conventional electrospinning process increased, a 3-fold decrease in the mechanical properties was observed. This was in contrast to the modified method, which showed a continual increase in mechanical properties, with the properties of the scaffold finally having similar mechanical properties to the scaffolds obtained via the conventional process at longer times. This “focusing” device thus enabled the fabrication of thicker 3-dimensional electrospun scaffolds (of thicknesses up to 3.5 mm), representing an important step towards the production of scaffolds for tissue engineering large defect sites in a multitude of tissues.
Resumo:
Electrostatic spinning or electrospinning is a fiber spinning technique driven by a high-voltage electric field that produces fibers with diameters in a submicrometer to nanometer range.1 Nanofibers are typical one-dimensional colloidal objects with an increased tensile strength, whose length can achieve a few kilometers and the specific surface area can be 100 m2 g–1 or higher.2 Nano- and microfibers from biocompatible polymers and biopolymers have received much attention in medical applications3 including biomedical structural elements (scaffolding used in tissue engineering,2,4–6 wound dressing,7 artificial organs and vascular grafts8), drug and vaccine delivery,9–11 protective shields in speciality fabrics, multifunctional membranes, etc. Other applications concern superhydrophobic coatings,12 encapsulation of solid materials,13 filter media for submicron particles in separation industry, composite reinforcement and structures for nano-electronic machines.
Resumo:
Large-scale purification/separation of bio-substances is a key technology required for rapid production of biological substances in bioengineering. Membrane filtration is a new separation process and has potential to be used for concentration (removal of solvent), desalting (removal of low molecular weight compounds), clarification (removal of particles), and fractionation (protein-protein separation). In this study, we developed an efficient membrane for protein separation based on ceramic nanofibers. Alumina nanofibers were prepared on a porous support and formed large flow passages. The radical changes in membrane structure provided new ceramic membranes with a large porosity (more than 70%) due to the replacement of bulk particles with fine fibers as building components. The pore size had an average of 11 nm and pure water flux was approximately 360 L•h-1•m-2•bar-1. Further surface modification with a self-assembled monolayer of (3-aminopropyl) triethoxysilane enhanced the membrane filtration properties. Characterization with SEM, FTIR, contact angle, and proteins separation tests indicated that the fibril layers uniformly spread on the surface of the porous support. Moreover, the membrane surface was changed from hydrophilic to hydrophobic after silane groups were grafted. It demonstrated that the silane-grafted alumina fiber membrane can reject 100% BSA protein and 92% cellulase protein. It was also able to retain 75% trypsin protein while maintaining a permeation flux of 48 L•h-1•m-2•bar-1.