185 resultados para Chen-Burer algorithm
Resumo:
The fracture healing process is modulated by the mechanical environment created by imposed loads and motion between the bone fragments. Contact between the fragments obviously results in a significantly different stress and strain environment to a uniform fracture gap containing only soft tissue (e.g. haematoma). The assumption of the latter in existing computational models of the healing process will hence exaggerate the inter-fragmentary strain in many clinically-relevant cases. To address this issue, we introduce the concept of a contact zone that represents a variable degree of contact between cortices by the relative proportions of bone and soft tissue present. This is introduced as an initial condition in a two-dimensional iterative finite element model of a healing tibial fracture, in which material properties are defined by the volume fractions of each tissue present. The algorithm governing the formation of cartilage and bone in the fracture callus uses fuzzy logic rules based on strain energy density resulting from axial compression. The model predicts that increasing the degree of initial bone contact reduces the amount of callus formed (periosteal callus thickness 3.1mm without contact, down to 0.5mm with 10% bone in contact zone). This is consistent with the greater effective stiffness in the contact zone and hence, a smaller inter-fragmentary strain. These results demonstrate that the contact zone strategy reasonably simulates the differences in the healing sequence resulting from the closeness of reduction.
Resumo:
In the filed of semantic grid, QoS-based Web service scheduling for workflow optimization is an important problem.However, in semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the scheduling consider not only quality properties of Web services, but also inter service dependencies which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address scheduling optimization problems in workflow applications in the presence of domain constraints and inter service dependencies. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
In Web service based systems, new value-added Web services can be constructed by integrating existing Web services. A Web service may have many implementations, which are functionally identical, but have different Quality of Service (QoS) attributes, such as response time, price, reputation, reliability, availability and so on. Thus, a significant research problem in Web service composition is how to select an implementation for each of the component Web services so that the overall QoS of the composite Web service is optimal. This is so called QoS-aware Web service composition problem. In some composite Web services there are some dependencies and conflicts between the Web service implementations. However, existing approaches cannot handle the constraints. This paper tackles the QoS-aware Web service composition problem with inter service dependencies and conflicts using a penalty-based genetic algorithm (GA). Experimental results demonstrate the effectiveness and the scalability of the penalty-based GA.
Resumo:
The Node-based Local Mesh Generation (NLMG) algorithm, which is free of mesh inconsistency, is one of core algorithms in the Node-based Local Finite Element Method (NLFEM) to achieve the seamless link between mesh generation and stiffness matrix calculation, and the seamless link helps to improve the parallel efficiency of FEM. Furthermore, the key to ensure the efficiency and reliability of NLMG is to determine the candidate satellite-node set of a central node quickly and accurately. This paper develops a Fast Local Search Method based on Uniform Bucket (FLSMUB) and a Fast Local Search Method based on Multilayer Bucket (FLSMMB), and applies them successfully to the decisive problems, i.e. presenting the candidate satellite-node set of any central node in NLMG algorithm. Using FLSMUB or FLSMMB, the NLMG algorithm becomes a practical tool to reduce the parallel computation cost of FEM. Parallel numerical experiments validate that either FLSMUB or FLSMMB is fast, reliable and efficient for their suitable problems and that they are especially effective for computing the large-scale parallel problems.
Resumo:
In this study, the authors propose a novel video stabilisation algorithm for mobile platforms with moving objects in the scene. The quality of videos obtained from mobile platforms, such as unmanned airborne vehicles, suffers from jitter caused by several factors. In order to remove this undesired jitter, the accurate estimation of global motion is essential. However it is difficult to estimate global motions accurately from mobile platforms due to increased estimation errors and noises. Additionally, large moving objects in the video scenes contribute to the estimation errors. Currently, only very few motion estimation algorithms have been developed for video scenes collected from mobile platforms, and this paper shows that these algorithms fail when there are large moving objects in the scene. In this study, a theoretical proof is provided which demonstrates that the use of delta optical flow can improve the robustness of video stabilisation in the presence of large moving objects in the scene. The authors also propose to use sorted arrays of local motions and the selection of feature points to separate outliers from inliers. The proposed algorithm is tested over six video sequences, collected from one fixed platform, four mobile platforms and one synthetic video, of which three contain large moving objects. Experiments show our proposed algorithm performs well to all these video sequences.
Resumo:
With the size and state of the Internet today, a good quality approach to organizing this mass of information is of great importance. Clustering web pages into groups of similar documents is one approach, but relies heavily on good feature extraction and document representation as well as a good clustering approach and algorithm. Due to the changing nature of the Internet, resulting in a dynamic dataset, an incremental approach is preferred. In this work we propose an enhanced incremental clustering approach to develop a better clustering algorithm that can help to better organize the information available on the Internet in an incremental fashion. Experiments show that the enhanced algorithm outperforms the original histogram based algorithm by up to 7.5%.
Resumo:
The TraSe (Transform-Select) algorithm has been developed to investigate the morphing of electronic music through automatically applying a series of deterministic compositional transformations to the source, guided towards a target by similarity metrics. This is in contrast to other morphing techniques such as interpolation or parameters or probabilistic variation. TraSe allows control over stylistic elements of the music through user-defined weighting of numerous compositional transformations. The formal evaluation of TraSe was mostly qualitative and occurred through nine participants completing an online questionnaire. The music generated by TraSe was generally felt to be less coherent than a human composed benchmark but in some cases judged as more creative.
Resumo:
In this paper, we discuss our participation to the INEX 2008 Link-the-Wiki track. We utilized a sliding window based algorithm to extract the frequent terms and phrases. Using the extracted phrases and term as descriptive vectors, the anchors and relevant links (both incoming and outgoing) are recognized efficiently.
Resumo:
This document describes algorithms based on Elliptic Cryptography (ECC) for use within the Secure Shell (SSH) transport protocol. In particular, it specifies Elliptic Curve Diffie-Hellman (ECDH) key agreement, Elliptic Curve Menezes-Qu-Vanstone (ECMQV) key agreement, and Elliptic Curve Digital Signature Algorithm (ECDSA) for use in the SSH Transport Layer protocol.
Resumo:
The population Monte Carlo algorithm is an iterative importance sampling scheme for solving static problems. We examine the population Monte Carlo algorithm in a simplified setting, a single step of the general algorithm, and study a fundamental problem that occurs in applying importance sampling to high-dimensional problem. The precision of the computed estimate from the simplified setting is measured by the asymptotic variance of estimate under conditions on the importance function. We demonstrate the exponential growth of the asymptotic variance with the dimension and show that the optimal covariance matrix for the importance function can be estimated in special cases.
Resumo:
In the field of semantic grid, QoS-based Web service composition is an important problem. In semantic and service rich environment like semantic grid, the emergence of context constraints on Web services is very common making the composition consider not only QoS properties of Web services, but also inter service dependencies and conflicts which are formed due to the context constraints imposed on Web services. In this paper, we present a repair genetic algorithm, namely minimal-conflict hill-climbing repair genetic algorithm, to address the Web service composition optimization problem in the presence of domain constraints and inter service dependencies and conflicts. Experimental results demonstrate the scalability and effectiveness of the genetic algorithm.
Resumo:
Semi-automatic segmentation of still images has vast and varied practical applications. Recently, an approach "GrabCut" has managed to successfully build upon earlier approaches based on colour and gradient information in order to address the problem of efficient extraction of a foreground object in a complex environment. In this paper, we extend the GrabCut algorithm further by applying an unsupervised algorithm for modelling the Gaussian Mixtures that are used to define the foreground and background in the segmentation algorithm. We show examples where the optimisation of the GrabCut framework leads to further improvements in performance.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.