96 resultados para Ceramic foam
Resumo:
In order to rigorously test emerging applications using prototypes and pilot designs, high temperature superconductor (HTS) materials must be fabricated into a variety of shapes in an economical manner. We have developed a simple, economical, ceramic slip-casting approach to form complex shaped monolithic HTS articles for which high bulk density has been achieved. The sintered articles exhibit good Meissner signal and consist of phase-pure HTSC phase. A low transport critical current density is observed and is explained on the basis of densification and grain growth. © 1995 The Metallurgical of Society of AIME.
Resumo:
Sandwich panels comprising steel facings and a polystyrene foam core are increasingly used as roof and wall claddings in buildings in Australia. When they are subjected to loads causing bending and/or axial compression, the steel plate elements of their profiled facing are susceptible to local buckling. However, when compared to panels with no foam core, they demonstrate significantly improved local buckling behaviour because they are supported by foam. In order to quantify such improvements and to validate the use of available design buckling stress formulae, an investigation using finite element analyses and laboratory experiments was carried out on steel plates that are commonly used in Australia of varying yield stress and thickness supported by a polystyrene foam core. This paper presents the details of this investigation, the buckling results and their comparison with available design buckling formulae.
Resumo:
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.
Resumo:
A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.
Resumo:
This paper offers numerical modelling of a waste heat recovery system. A thin layer of metal foam is attached to a cold plate to absorb heat from hot gases leaving the system. The heat transferred from the exhaust gas is then transferred to a cold liquid flowing in a secondary loop. Two different foam PPI (Pores Per Inch) values are examined over a range of fluid velocities. Numerical results are then compared to both experimental data and theoretical results available in the literature. Challenges in getting the simulation results to match those of the experiments are addressed and discussed in detail. In particular, interface boundary conditions specified between a porous layer and a fluid layer are investigated. While physically one expects much lower fluid velocity in the pores compared to that of free flow, capturing this sharp gradient at the interface can add to the difficulties of numerical simulation. The existing models in the literature are modified by considering the pressure gradient inside and outside the foam. Comparisons against the numerical modelling are presented. Finally, based on experimentally-validated numerical results, thermo-hydraulic performance of foam heat exchangers as waste heat recovery units is discussed with the main goal of reducing the excess pressure drop and maximising the amount of heat that can be recovered from the hot gas stream.
Resumo:
The contamination of electrical insulators is one of the major contributors to the risk of operation outages in electrical substations, especially in coastal zones with high salinity levels and atmospheric pollution. By using the measurement of leakage-currents, which is one of the main indicators of contamination in insulators, this work seeks to the determine the correlation with climatic variables, such as ambient temperature, relative humidity, solar irradiance, atmospheric pressure, and wind speed and direction. The results obtained provide an input to the behaviour of the leakage current under atmospheric conditions that are particular to the Caribbean coast of Colombia. Spearman’s rank correlation coefficients and principal component analysis are utilised to determine the significant relationships among the different variables under consideration. The necessary information for the study was obtained via historical databases of both atmospheric variables and the leakage current measured in over a period of one year in a 220-kV potential transformer insulator. We identified the influencing factors of temperature, humidity, radiation, wind speed and direction on the magnitude of the leakage current as the most relevant.
Resumo:
Portable, water filled road safety barriers are used to provide protection and reduce the potential hazard due to errant vehicles in areas where the road conditions change frequently (e.g. near road work sites). As part of an effort to reduce excessive working widths typical of these systems, a study was conducted to assess the effectiveness of introducing polymeric foam filled panels into the design. Surrogate impact tests of a design typical of such as barrier system were conducted utilising a pneumatically powered horizontal impact testing machine up to impact energies of 7.40 kJ. Results of these tests are utilised to examine the barrier behaviour, in addition to being used to validate a couple FE/SPH model of the barrier system. Once validated, the FE/SPH model it utilised as the basis for a parametric study into the efficacy and effects of the inclusion of polymeric foam filled panels on the performance of portable water filled road safety barriers. It was found that extruded polystyrene foam functioned well, with a greater thickness of the foam panel significantly reducing the impacting body velocity as the barrier began to translate.
Resumo:
This paper presents a numerical model for understanding particle transport and deposition in metal foam heat exchangers. Two-dimensional steady and unsteady numerical simulations of a standard single row metal foam-wrapped tube bundle are performed for different particle size distributions, i.e. uniform and normal distributions. Effects of different particle sizes and fluid inlet velocities on the overall particle transport inside and outside the foam layer are also investigated. It was noted that the simplification made in the previously-published numerical works in the literature, e.g. uniform particle deposition in the foam, is not necessarily accurate at least for the cases considered here. The results highlight the preferential particle deposition areas both along the tube walls and inside the foam using a developed particle deposition likelihood matrix. This likelihood matrix is developed based on three criteria being particle local velocity, time spent in the foam, and volume fraction. It was noted that the particles tend to deposit near both front and rear stagnation points. The former is explained by the higher momentum and direct exposure of the particles to the foam while the latter only accommodate small particles which can be entrained in the recirculation region formed behind the foam-wrapped tubes.
Resumo:
Archaeology has been called 'the science of the artefact' and nothing demonstrates this point better than the current interest displayed in provenance studies of archaeological objects. In theory, every vessel carries a chemical compositional pattern or 'fingerprint' identical with the clay from which it was made and this relationship is basic to provenance studies. The reasoning behind provenance or sourcing studies is to probe into this past and attempt to re-create prehistory by obtaining information on exchange and social interaction. This paper discusses the use of XRF spectrometry for the analysis of ancient pottery and ceramics to examine whether it is possible to predict prehictoric cultural exchanges.
Resumo:
Exposure to aqueous film forming foam (AFFF) was evaluated in 149 firefighters working at AFFF training facilities in Australia by analysis of PFOS and related compounds in serum. A questionnaire was designed to capture information about basic demographic factors, lifestyle factors and potential occupational exposure (such as work history and self-reported skin contact with foam). The results showed that a number of factors were associated with PFAA serum concentrations. Blood donation was found to be linked to low PFAA levels, and the concentrations of PFOS and PFHxS were found to be positively associated with years of jobs with AFFF contact. The highest levels of PFOS and PFHxS were one order of magnitude higher compared to the general population in Australia and Canada. Study participants who had worked ten years or less had levels of PFOS that were similar to or only slightly above those of the general population. This coincides with the phase out of 3M AFFF from all training facilities in 2003, and suggests that the exposures to PFOS and PFHxS in AFFF have declined in recent years. Self-reporting of skin contact and frequency of contact were used as an index of exposure. Using this index, there was no relationship between PFOS levels and skin exposure. This index of exposure is limited as it relies on self-report and it only considers skin exposure to AFFF, and does not capture other routes of potential exposure. Possible associations between serum PFAA concentrations and five biochemical outcomes were assessed. The outcomes were serum cholesterol, triglycerides, high-density lipoproteins, low density lipoproteins, and uric acid. No statistical associations between any of these endpoints and serum PFAA concentrations were observed.
Tribological properties of γ-Y2Si2O7 ceramic against AISI 52100 steel and Si3N4 ceramic counterparts
Resumo:
Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on singlephase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5-15N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53-0.63 against AISI 52100 steel and between 0.51-0.56 against Si3N4 ceramic. We found thatwear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10-4mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.