152 resultados para COMPOSITE MICROSPHERES
Resumo:
Assessing the structural health state of urban infrastructure is crucial in terms of infrastructure sustainability. This chapter uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridges. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely, the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change, before and after damage, are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of a proposed structure with six damage scenarios. It is concluded that the modal strain energy method is capable of application to multiple-girder composite bridges, as evidenced through the example treated in this chapter.
Resumo:
Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.
Resumo:
Polymer microspheres loaded with bioactive particles, biomolecules, proteins, and/or growth factors play important roles in tissue engineering, drug delivery, and cell therapy. The conventional double emulsion method and a new method of electrospraying into liquid nitrogen were used to prepare bovine serum albumin (BAS)-loaded poly(lactic-co-glycolic acid) (PLGA) porous microspheres. The particle size, the surface morphology and the internal porous structure of the microspheres were observed using scanning electron microscopy (SEM). The loading efficiency, the encapsulation efficiency, and the release profile of the BSA-loaded PLGA microspheres were measured and studied. It was shown that the microspheres from double emulsion had smaller particle sizes (3-50 m), a less porous structure, a poor loading efficiency (5.2 %), and a poor encapsulation efficiency (43.5%). However, the microspheres from the electrospraying into liquid nitrogen had larger particle sizes (400-600 m), a highly porous structure, a high loading efficiency (12.2%), and a high encapsulation efficiency (93.8%). Thus the combination of electrospraying with freezing in liquid nitrogen and subsequent freeze drying represented a suitable way to produce polymer microspheres for effective loading and sustained release of proteins.
Resumo:
In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.
Resumo:
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.
Resumo:
Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.
Resumo:
Cloud computing has become a main medium for Software as a Service (SaaS) hosting as it can provide the scalability a SaaS requires. One of the challenges in hosting the SaaS is the placement process where the placement has to consider SaaS interactions between its components and SaaS interactions with its data components. A previous research has tackled this problem using a classical genetic algorithm (GA) approach. This paper proposes a cooperative coevolutionary algorithm (CCEA) approach. The CCEA has been implemented and evaluated and the result has shown that the CCEA has produced higher quality solutions compared to the GA.
Resumo:
The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.
Resumo:
The design of high-rise building is more often dictated by its serviceability rather than strength. Structural Engineers are always striving to overcome challenges of controlling lateral deflection and storey drifts as well as self weight of structure imposed on foundation. One of the most effective techniques is the use of outrigger and belt truss system in Composite structures that can astutely solve the above two issues in High-rise constructions. This paper investigates deflection control by effective utilisation of belt truss and outrigger system on a 60-storey composite building subjected to wind loads. A three dimensional Finite Element Analysis is performed with one, two and three outrigger levels. The reductions in deflection are 34 percent, 42 percent and 51 percent respectively as compared to a model without any outrigger system. There is an appreciable decline in the storey drifts with the introduction of these stiffer arrangements.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Hydroxyapatite (HAP) is a major component of bone and has osteoconductive and -inductive properties. It has been successfully applied as a substrate in bone tissue engineering, either with or without a biodegradable polymer such as polycaprolactone or polylactide. Recently, we have developed a stereolithography resin based on poly(D,L-lactide) (PDLLA) and a non-reactive diluent, that allows for the preparation of tissue engineering scaffolds with designed architectures. In this work, designed porous composite structures of PDLLA and HAP are prepared by stereolithography.
Resumo:
Aim: Bone loss associated with trauma, osteo-degenerative diseases and tumors has tremendous socioeconomic impact related to personal and occupation disability and health care costs. In the present climate of increasing life expectancy with an ensuing increase in bone-related injuries, orthopaedic surgery is undergoing a paradigm shift from bone-grafting to bone engineering, where a scaffold is implanted to provide adequate load bearing and enhance tissue regeneration. We aim to develop composite scaffolds for bone tissue engineering applications to replace the current gold standard of autografting. ---------- Methods: Medical grade polycaprolactone-tricalcium phosphate (mPCL/TCP) scaffolds (80/20 wt%) were custom made using fused deposition modelling to produce 1x1.5x2 cm sized implants for critical-sized pig cranial implantations, empty defects were used as a control. Autologous bone marrow stromal cells (BMSCs) were extracted and precultured for 2 weeks, dispersed within fibrin glue and injected during scaffold implantation. After 2 years, microcomputed tomography and histology were used to assess bone regenerative capabilities of cell versus cell-free scaffolds. ---------- Results: Extensive bone regeneration was evident throughout the entire scaffold. Clear osteocytes embedded within mineralised matrix and active osteoblasts present around scaffold struts were observed. Cell groups performed better than cell-free scaffolds. ---------- Conclusions: Bone regeneration within defects which cannot heal unassisted can be achieved using mPCL/TCP scaffolds. This is improved by the inclusion of autogenous BMSCs. Further work will include the inclusion of growth factors including BMP-2, VEGF and PDGF to provide multifunctional scaffolds, where the three-dimensional (3D) template itself acts as a biomimetic, programmable and multi-drug delivery device.