105 resultados para Beatriz Guido


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the problem of document ranking in a non-traditional retrieval task, called subtopic retrieval. This task involves promoting relevant documents that cover many subtopics of a query at early ranks, providing thus diversity within the ranking. In the past years, several approaches have been proposed to diversify retrieval results. These approaches can be classified into two main paradigms, depending upon how the ranks of documents are revised for promoting diversity. In the first approach subtopic diversification is achieved implicitly, by choosing documents that are different from each other, while in the second approach this is done explicitly, by estimating the subtopics covered by documents. Within this context, we compare methods belonging to the two paradigms. Furthermore, we investigate possible strategies for integrating the two paradigms with the aim of formulating a new ranking method for subtopic retrieval. We conduct a number of experiments to empirically validate and contrast the state-of-the-art approaches as well as instantiations of our integration approach. The results show that the integration approach outperforms state-of-the-art strategies with respect to a number of measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social tagging systems are shown to evidence a well known cognitive heuristic, the guppy effect, which arises from the combination of different concepts. We present some empirical evidence of this effect, drawn from a popular social tagging Web service. The guppy effect is then described using a quantum inspired formalism that has been already successfully applied to model conjunction fallacy and probability judgement errors. Key to the formalism is the concept of interference, which is able to capture and quantify the strength of the guppy effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, mean-variance analysis has been proposed as a novel paradigm to model document ranking in Information Retrieval. The main merit of this approach is that it diversifies the ranking of retrieved documents. In its original formulation, the strategy considers both the mean of relevance estimates of retrieved documents and their variance. How- ever, when this strategy has been empirically instantiated, the concepts of mean and variance are discarded in favour of a point-wise estimation of relevance (to replace the mean) and of a parameter to be tuned or, alternatively, a quantity dependent upon the document length (to replace the variance). In this paper we revisit this ranking strategy by going back to its roots: mean and variance. For each retrieved document, we infer a relevance distribution from a series of point-wise relevance estimations provided by a number of different systems. This is used to compute the mean and the variance of document relevance estimates. On the TREC Clueweb collection, we show that this approach improves the retrieval performances. This development could lead to new strategies to address the fusion of relevance estimates provided by different systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we summarise the development of a ranking principle based on quantum probability theory, called the Quantum Probability Ranking Principle (QPRP), and we also provide an overview of the initial experiments performed employing the QPRP. The main difference between the QPRP and the classic Probability Ranking Principle, is that the QPRP implicitly captures the dependencies between documents by means of quantum interference". Subsequently, the optimal ranking of documents is not based solely on documents' probability of relevance but also on the interference with the previously ranked documents. Our research shows that the application of quantum theory to problems within information retrieval can lead to consistently better retrieval effectiveness, while still being simple, elegant and tractable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ranking documents according to the Probability Ranking Principle has been theoretically shown to guarantee optimal retrieval effectiveness in tasks such as ad hoc document retrieval. This ranking strategy assumes independence among document relevance assessments. This assumption, however, often does not hold, for example in the scenarios where redundancy in retrieved documents is of major concern, as it is the case in the sub–topic retrieval task. In this chapter, we propose a new ranking strategy for sub–topic retrieval that builds upon the interdependent document relevance and topic–oriented models. With respect to the topic– oriented model, we investigate both static and dynamic clustering techniques, aiming to group topically similar documents. Evidence from clusters is then combined with information about document dependencies to form a new document ranking. We compare and contrast the proposed method against state–of–the–art approaches, such as Maximal Marginal Relevance, Portfolio Theory for Information Retrieval, and standard cluster–based diversification strategies. The empirical investigation is performed on the ImageCLEF 2009 Photo Retrieval collection, where images are assessed with respect to sub–topics of a more general query topic. The experimental results show that our approaches outperform the state–of–the–art strategies with respect to a number of diversity measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years several works have investigated a formal model for Information Retrieval (IR) based on the mathematical formalism underlying quantum theory. These works have mainly exploited geometric and logical–algebraic features of the quantum formalism, for example entanglement, superposition of states, collapse into basis states, lattice relationships. In this poster I present an analogy between a typical IR scenario and the double slit experiment. This experiment exhibits the presence of interference phenomena between events in a quantum system, causing the Kolmogorovian law of total probability to fail. The analogy allows to put forward the routes for the application of quantum probability theory in IR. However, several questions need still to be addressed; they will be the subject of my PhD research

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assumptions underlying the Probability Ranking Principle (PRP) have led to a number of alternative approaches that cater or compensate for the PRP’s limitations. All alternatives deviate from the PRP by incorporating dependencies. This results in a re-ranking that promotes or demotes documents depending upon their relationship with the documents that have been already ranked. In this paper, we compare and contrast the behaviour of state-of-the-art ranking strategies and principles. To do so, we tease out analytical relationships between the ranking approaches and we investigate the document kinematics to visualise the effects of the different approaches on document ranking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to investigate the role of emotion features in diversifying document rankings to improve the effectiveness of Information Retrieval (IR) systems. For this purpose, two approaches are proposed to consider emotion features for diversification, and they are empirically tested on the TREC 678 Interactive Track collection. The results show that emotion features are capable of enhancing retrieval effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, Portfolio Theory (PT) has been proposed for Information Retrieval. However, under non-trivial conditions PT violates the original Probability Ranking Principle (PRP). In this poster, we shall explore whether PT upholds a different ranking principle based on Quantum Theory, i.e. the Quantum Probability Ranking Principle (QPRP), and examine the relationship between this new model and the new ranking principle. We make a significant contribution to the theoretical development of PT and show that under certain circumstances PT upholds the QPRP, and thus guarantees an optimal ranking according to the QPRP. A practical implication of this finding is that the parameters of PT can be automatically estimated via the QPRP, instead of resorting to extensive parameter tuning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum-inspired models have recently attracted increasing attention in Information Retrieval. An intriguing characteristic of the mathematical framework of quantum theory is the presence of complex numbers. However, it is unclear what such numbers could or would actually represent or mean in Information Retrieval. The goal of this paper is to discuss the role of complex numbers within the context of Information Retrieval. First, we introduce how complex numbers are used in quantum probability theory. Then, we examine van Rijsbergen’s proposal of evoking complex valued representations of informations objects. We empirically show that such a representation is unlikely to be effective in practice (confuting its usefulness in Information Retrieval). We then explore alternative proposals which may be more successful at realising the power of complex numbers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For TREC Crowdsourcing 2011 (Stage 2) we propose a networkbased approach for assigning an indicative measure of worker trustworthiness in crowdsourced labelling tasks. Workers, the gold standard and worker/gold standard agreements are modelled as a network. For the purpose of worker trustworthiness assignment, a variant of the PageRank algorithm, named TurkRank, is used to adaptively combine evidence that suggests worker trustworthiness, i.e., agreement with other trustworthy co-workers and agreement with the gold standard. A single parameter controls the importance of co-worker agreement versus gold standard agreement. The TurkRank score calculated for each worker is incorporated with a worker-weighted mean label aggregation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of spam in a document ranking is a major issue for Web search engines. Common approaches that cope with spam remove from the document rankings those pages that are likely to contain spam. These approaches are implemented as post-retrieval processes, that filter out spam pages only after documents have been retrieved with respect to a user’s query. In this paper we suggest to remove spam pages at indexing time, therefore obtaining a pruned index that is virtually “spam-free”. We investigate the benefits of this approach from three points of view: indexing time, index size, and retrieval performances. Not surprisingly, we found that the strategy decreases both the time required by the indexing process and the space required for storing the index. Surprisingly instead, we found that by considering a spam-pruned version of a collection’s index, no difference in retrieval performance is found when compared to that obtained by traditional post-retrieval spam filtering approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we investigate the use of quantum probability theory for ranking documents. Quantum probability theory is used to estimate the probability of relevance of a document given a user's query. We posit that quantum probability theory can lead to a better estimation of the probability of a document being relevant to a user's query than the common approach, i. e. the Probability Ranking Principle (PRP), which is based upon Kolmogorovian probability theory. Following our hypothesis, we formulate an analogy between the document retrieval scenario and a physical scenario, that of the double slit experiment. Through the analogy, we propose a novel ranking approach, the quantum probability ranking principle (qPRP). Key to our proposal is the presence of quantum interference. Mathematically, this is the statistical deviation between empirical observations and expected values predicted by the Kolmogorovian rule of additivity of probabilities of disjoint events in configurations such that of the double slit experiment. We propose an interpretation of quantum interference in the document ranking scenario, and examine how quantum interference can be effectively estimated for document retrieval. To validate our proposal and to gain more insights about approaches for document ranking, we (1) analyse PRP, qPRP and other ranking approaches, exposing the assumptions underlying their ranking criteria and formulating the conditions for the optimality of the two ranking principles, (2) empirically compare three ranking principles (i. e. PRP, interactive PRP, and qPRP) and two state-of-the-art ranking strategies in two retrieval scenarios, those of ad-hoc retrieval and diversity retrieval, (3) analytically contrast the ranking criteria of the examined approaches, exposing similarities and differences, (4) study the ranking behaviours of approaches alternative to PRP in terms of the kinematics they impose on relevant documents, i. e. by considering the extent and direction of the movements of relevant documents across the ranking recorded when comparing PRP against its alternatives. Our findings show that the effectiveness of the examined ranking approaches strongly depends upon the evaluation context. In the traditional evaluation context of ad-hoc retrieval, PRP is empirically shown to be better or comparable to alternative ranking approaches. However, when we turn to examine evaluation contexts that account for interdependent document relevance (i. e. when the relevance of a document is assessed also with respect to other retrieved documents, as it is the case in the diversity retrieval scenario) then the use of quantum probability theory and thus of qPRP is shown to improve retrieval and ranking effectiveness over the traditional PRP and alternative ranking strategies, such as Maximal Marginal Relevance, Portfolio theory, and Interactive PRP. This work represents a significant step forward regarding the use of quantum theory in information retrieval. It demonstrates in fact that the application of quantum theory to problems within information retrieval can lead to improvements both in modelling power and retrieval effectiveness, allowing the constructions of models that capture the complexity of information retrieval situations. Furthermore, the thesis opens up a number of lines for future research. These include: (1) investigating estimations and approximations of quantum interference in qPRP; (2) exploiting complex numbers for the representation of documents and queries, and; (3) applying the concepts underlying qPRP to tasks other than document ranking.