64 resultados para BIOLOGISTS
Resumo:
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Resumo:
Consumers of whole foods, such as fruits, demand consistent high quality and seek varieties with enhanced health properties, convenience or novel taste. We have raised the polyphenolic content of apple by genetic engineering of the anthocyanin pathway using the apple transcription factor MYB10. These apples have very high concentrations of foliar, flower and fruit anthocyanins, especially in the fruit peel. Independent lines were examined for impacts on tree growth, photosynthesis and fruit characteristics. Fruit were analysed for changes in metabolite and transcript levels. Fruit were also used in taste trials to study the consumer perception of such a novel apple. No negative taste attributes were associated with the elevated anthocyanins. Modification with this one gene provides near isogenic material and allows us to examine the effects on an established cultivar, with a view to enhancing consumer appeal independently of other fruit qualities. © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Resumo:
Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity.
Resumo:
BACKGROUND Integrating plant genomics and classical breeding is a challenge for both plant breeders and molecular biologists. Marker-assisted selection (MAS) is a tool that can be used to accelerate the development of novel apple varieties such as cultivars that have fruit with anthocyanin through to the core. In addition, determining the inheritance of novel alleles, such as the one responsible for red flesh, adds to our understanding of allelic variation. Our goal was to map candidate anthocyanin biosynthetic and regulatory genes in a population segregating for the red flesh phenotypes. RESULTS We have identified the Rni locus, a major genetic determinant of the red foliage and red colour in the core of apple fruit. In a population segregating for the red flesh and foliage phenotype we have determined the inheritance of the Rni locus and DNA polymorphisms of candidate anthocyanin biosynthetic and regulatory genes. Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNPs) in the candidate genes were also located on an apple genetic map. We have shown that the MdMYB10 gene co-segregates with the Rni locus and is on Linkage Group (LG) 09 of the apple genome. CONCLUSION We have performed candidate gene mapping in a fruit tree crop and have provided genetic evidence that red colouration in the fruit core as well as red foliage are both controlled by a single locus named Rni. We have shown that the transcription factor MdMYB10 may be the gene underlying Rni as there were no recombinants between the marker for this gene and the red phenotype in a population of 516 individuals. Associating markers derived from candidate genes with a desirable phenotypic trait has demonstrated the application of genomic tools in a breeding programme of a horticultural crop species.
Resumo:
Fruit softening in apple (Malus 3 domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A coldrelated gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the coldand ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples.
Resumo:
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Resumo:
The acyl composition of membrane phospholipids in kidney and brain of mammals of different body mass was examined. It was hypothesized that reduction in unsaturation index (number of double bonds per 100 acyl chains) of membrane phospholipids with increasing body mass in mammals would be made-up of similar changes in acyl composition across all phospholipid classes and that phospholipid class distribution would be regulated and similar in the same tissues of the different-sized mammals. The results of this study supported both hypotheses. Differences in membrane phospholipid acyl composition (i. e. decreased omega-3 fats, increased monounsaturated fats and decreased unsaturation index with increasing body size) were not restricted to any specific phospholipid molecule or to any specific phospholipid class but were observed in all phospholipid classes. With increase in body mass of mammals both monounsaturates and use of less unsaturated polyunsaturates increases at the expense of the long-chain highly unsaturated omega-3 and omega-6 polyunsaturates, producing decreases in membrane unsaturation. The distribution of membrane phospholipid classes was essentially the same in the different-sized mammals with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) together constituting similar to 91% and similar to 88% of all phospholipids in kidney and brain, respectively. The lack of sphingomyelin in the mouse tissues and higher levels in larger mammals suggests an increased presence of membrane lipid rafts in larger mammals. The results of this study support the proposal that the physical properties of membranes are likely to be involved in changing metabolic rate.
Resumo:
As microenvironmental factors such as three-dimensionality and cell–matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to further our understanding of the PCa-bone crosstalk.
Resumo:
This study examined questions concerning differences in the acyl composition of membrane phospholipids that have been linked to the faster rates of metabolic processes in endotherms versus ectotherms. In liver, kidney, heart and brain of the ectothermic reptile, Trachydosaurus rugosus, and the endothermic mammal, Rattus norvegicus, previous findings of fewer unsaturates but a greater unsaturation index (UI) in membranes of the mammal versus those of the reptile were confirmed. Moreover, the study showed that the distribution of phospholipid head-group classes was similar in the same tissues of the reptile and mammal and that the differences in acyl composition were present in all phospholipid classes analysed, suggesting a role for the physical over the chemical properties of membranes in determining the faster rates of metabolic processes in endotherms. The most common phosphatidylcholine (PC) molecules present in all tissues (except brain) of the reptile were 16:0/18:1, 16:0/18:2, 18:0/18:2, 18:1/18:1 and 18:1/18:2, whereas arachidonic acid (20:4), containing PCs 16:0/ 20: 4, 18: 0/ 20: 4, were the common molecules in the mammal. The most abundant phosphatidylethanolamines ( PE) used in the tissue of the reptile were 18:0/18:2, 18:0/20:4, 18:1/18:1, 18:1/18:2 and 18:1/20:4, compared to 16: 0/ 18: 2, 16: 0/ 20: 4, 16: 0/ 22: 6, 18: 0/ 20: 4, 18: 0/ 22: 6 and 18:1/20: 4 in the mammal. UI differences were primarily due to arachidonic acid found in both PC and PEs, whereas docosahexaenoic acid (22:6) was a lesser contributor mainly within PEs and essentially absent in the kidney. The phospholipid composition of brain was more similar in the reptile and mammal compared to those of other tissues.
Resumo:
Blood vascular cells and lymphatic endothelial cells (BECs and LECs, respectively) form two separate vascular systems and are functionally distinct cell types or lineages with characteristic gene expression profiles. Interconversion between these cell types has not been reported. Here, we show that in conventional in vitro angiogenesis assays, human BECs of fetal or adult origin show altered gene expression that is indicative of transition to a lymphatic-like phenotype. This change occurs in BECs undergoing tubulogenesis in fibrin, collagen or Matrigel assays, but is independent of tube formation per se, because it is not inhibited by a metalloproteinase inhibitor that blocks tubulogenesis. It is also reversible, since cells removed from 3D tubules revert to a BEC expression profile upon monolayer culture. Induction of the lymphatic-like phenotype is partially inhibited by co-culture of HUVECs with perivascular cells. These data reveal an unexpected plasticity in endothelial phenotype, which is regulated by contact with the ECM environment and/or cues from supporting cells.
Resumo:
The Arabidopsis (Arabidopsis thaliana) orthologs of Brca2, a protein whose mutations are involved in breast cancer in humans, were previously shown to be essential at meiosis. In an attempt to better understand the Brca2-interacting properties, we examined four partners of the two isoforms of Brca2 identified in Arabidopsis (AtRad51, AtDmc1, and two AtDss1 isoforms). The two Brca2 and the two Dss1 isoforms are named AtBrca2(IV), AtBrca2(V), AtDss1(I), and AtDss1(V) after their chromosomal localization. We first show that both AtBrca2 proteins can interact with either AtRad51 or AtDmc1 in vitro, and that the N-terminal region of AtBrca2 is responsible for these interactions. More specifically, the BRC motifs (so called because iterated in the Brca2 protein) in Brca2 are involved in these interactions: BRC motif number 2 (BRC2) alone can interact with AtDmc1, whereas BRC motif number 4 (BRC4) recognizes AtRad51. The human Rad51 and Dmc1 proteins themselves can interact with either the complete (HsRad51) or a shorter version of AtBrca2 (HsRad51 or HsDmc1) that comprises all four BRC motifs. We also identified two Arabidopsis isoforms of Dss1, another known partner of Brca2 in other organisms. Although all four Brca2 and Dss1 proteins are much conserved, AtBrca2(IV) interacts with only one of these AtDss1 proteins, whereas AtBrca2(V) interacts with both of them. Finally, we show for the first time that an AtBrca2 protein could bind two different partners at the same time: AtRad51 and AtDss1(I), or AtDmc1 and AtDss1(I).
Resumo:
Background The sequencing, de novo assembly and annotation of transcriptome datasets generated with next generation sequencing (NGS) has enabled biologists to answer genomic questions in non-model species with unprecedented ease. Reliable and accurate de novo assembly and annotation of transcriptomes, however, is a critically important step for transcriptome assemblies generated from short read sequences. Typical benchmarks for assembly and annotation reliability have been performed with model species. To address the reliability and accuracy of de novo transcriptome assembly in non-model species, we generated an RNAseq dataset for an intertidal gastropod mollusc species, Nerita melanotragus, and compared the assembly produced by four different de novo transcriptome assemblers; Velvet, Oases, Geneious and Trinity, for a number of quality metrics and redundancy. Results Transcriptome sequencing on the Ion Torrent PGM™ produced 1,883,624 raw reads with a mean length of 133 base pairs (bp). Both the Trinity and Oases de novo assemblers produced the best assemblies based on all quality metrics including fewer contigs, increased N50 and average contig length and contigs of greater length. Overall the BLAST and annotation success of our assemblies was not high with only 15-19% of contigs assigned a putative function. Conclusions We believe that any improvement in annotation success of gastropod species will require more gastropod genome sequences, but in particular an increase in mollusc protein sequences in public databases. Overall, this paper demonstrates that reliable and accurate de novo transcriptome assemblies can be generated from short read sequencers with the right assembly algorithms. Keywords: Nerita melanotragus; De novo assembly; Transcriptome; Heat shock protein; Ion torrent
Resumo:
"This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences."--Publisher website
Resumo:
Background Small RNA sequencing is commonly used to identify novel miRNAs and to determine their expression levels in plants. There are several miRNA identification tools for animals such as miRDeep, miRDeep2 and miRDeep*. miRDeep-P was developed to identify plant miRNA using miRDeep’s probabilistic model of miRNA biogenesis, but it depends on several third party tools and lacks a user-friendly interface. The objective of our miRPlant program is to predict novel plant miRNA, while providing a user-friendly interface with improved accuracy of prediction. Result We have developed a user-friendly plant miRNA prediction tool called miRPlant. We show using 16 plant miRNA datasets from four different plant species that miRPlant has at least a 10% improvement in accuracy compared to miRDeep-P, which is the most popular plant miRNA prediction tool. Furthermore, miRPlant uses a Graphical User Interface for data input and output, and identified miRNA are shown with all RNAseq reads in a hairpin diagram. Conclusions We have developed miRPlant which extends miRDeep* to various plant species by adopting suitable strategies to identify hairpin excision regions and hairpin structure filtering for plants. miRPlant does not require any third party tools such as mapping or RNA secondary structure prediction tools. miRPlant is also the first plant miRNA prediction tool that dynamically plots miRNA hairpin structure with small reads for identified novel miRNAs. This feature will enable biologists to visualize novel pre-miRNA structure and the location of small RNA reads relative to the hairpin. Moreover, miRPlant can be easily used by biologists with limited bioinformatics skills.
Resumo:
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.