85 resultados para BIFURCATION LESION
Resumo:
The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
We perform an analytic and numerical study of an inviscid contracting bubble in a two-dimensional Hele-Shaw cell, where the effects of both surface tension and kinetic undercooling on the moving bubble boundary are not neglected. In contrast to expanding bubbles, in which both boundary effects regularise the ill-posedness arising from the viscous (Saffman-Taylor) instability, we show that in contracting bubbles the two boundary effects are in competition, with surface tension stabilising the boundary, and kinetic undercooling destabilising it. This competition leads to interesting bifurcation behaviour in the asymptotic shape of the bubble in the limit it approaches extinction. In this limit, the boundary may tend to become either circular, or approach a line or "slit" of zero thickness, depending on the initial condition and the value of a nondimensional surface tension parameter. We show that over a critical range of surface tension values, both these asymptotic shapes are stable. In this regime there exists a third, unstable branch of limiting self-similar bubble shapes, with an asymptotic aspect ratio (dependent on the surface tension) between zero and one. We support our asymptotic analysis with a numerical scheme that utilises the applicability of complex variable theory to Hele-Shaw flow.
Resumo:
In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.
Resumo:
Advances in mobile telephone technology and available dermoscopic attachments for mobile telephones have created a unique opportunity for consumer-initiated mobile teledermoscopy. At least 2 companies market a dermoscope attachment for an iPhone (Apple), forming a mobile teledermoscope. These devices and the corresponding software applications (apps) enable (1) lesion magnification (at least ×20) and visualization with polarized light; (2) photographic documentation using the telephone camera; (3) lesion measurement (ruler); (4) adding of image and lesion details; and (5) e-mail data to a teledermatologist for review. For lesion assessment, the asymmetry-color (AC) rule has 94% sensitivity and 62 specificity for melanoma identification by consumers [1]. Thus, consumers can be educated to recognize asymmetry and color patterns in suspect lesions. However, we know little about consumers' use of mobile teledermoscopy for lesion assessment.
Resumo:
Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.
Resumo:
Background: Multiple sclerosis (MS) is the most common cause of chronic neurologic disability beginning in early to middle adult life. Results from recent genome-wide association studies (GWAS) have substantially lengthened the list of disease loci and provide convincing evidence supporting a multifactorial and polygenic model of inheritance. Nevertheless, the knowledge of MS genetics remains incomplete, with many risk alleles still to be revealed. Methods: We used a discovery GWAS dataset (8,844 samples, 2,124 cases and 6,720 controls) and a multi-step logistic regression protocol to identify novel genetic associations. The emerging genetic profile included 350 independent markers and was used to calculate and estimate the cumulative genetic risk in an independent validation dataset (3,606 samples). Analysis of covariance (ANCOVA) was implemented to compare clinical characteristics of individuals with various degrees of genetic risk. Gene ontology and pathway enrichment analysis was done using the DAVID functional annotation tool, the GO Tree Machine, and the Pathway-Express profiling tool. Results: In the discovery dataset, the median cumulative genetic risk (P-Hat) was 0.903 and 0.007 in the case and control groups, respectively, together with 79.9% classification sensitivity and 95.8% specificity. The identified profile shows a significant enrichment of genes involved in the immune response, cell adhesion, cell communication/ signaling, nervous system development, and neuronal signaling, including ionotropic glutamate receptors, which have been implicated in the pathological mechanism driving neurodegeneration. In the validation dataset, the median cumulative genetic risk was 0.59 and 0.32 in the case and control groups, respectively, with classification sensitivity 62.3% and specificity 75.9%. No differences in disease progression or T2-lesion volumes were observed among four levels of predicted genetic risk groups (high, medium, low, misclassified). On the other hand, a significant difference (F = 2.75, P = 0.04) was detected for age of disease onset between the affected misclassified as controls (mean = 36 years) and the other three groups (high, 33.5 years; medium, 33.4 years; low, 33.1 years). Conclusions: The results are consistent with the polygenic model of inheritance. The cumulative genetic risk established using currently available genome-wide association data provides important insights into disease heterogeneity and completeness of current knowledge in MS genetics.
Resumo:
MC1R gene variants have previously been associated with red hair and fair skin color, moreover skin ultraviolet sensitivity and a strong association with melanoma has been demonstrated for three variant alleles that are active in influencing pigmentation: Arg151Cys, Arg160Trp, and Asp294His. This study has confirmed these pigmentary associations with MC1R genotype in a collection of 220 individuals drawn from the Nambour community in Queensland, Australia, 111 of whom were at high risk and 109 at low risk of basal cell carcinoma and squamous cell carcinoma. Comparative allele frequencies for nine MC1R variants that have been reported in the Caucasian population were determined for these two groups, and an association between prevalence of basal cell carcinoma, squamous cell carcinoma, solar keratosis and the same three active MC1R variant alleles was demonstrated [odds ratio = 3.15 95% CI (1.7, 5.82)]. Three other commonly occurring variant alleles: Val60Leu, Val92Met, and Arg163Gln were identified as having a minimal impact on pigmentation phenotype as well as basal cell carcinoma and squamous cell carcinoma risk. A significant heterozygote effect was demonstrated where individuals carrying a single MC1R variant allele were more likely to have fair and sun sensitive skin as well as carriage of a solar lesion when compared with those individuals with a consensus MC1R genotype. After adjusting for the effects of pigmentation on the association between MC1R variant alleles and basal cell carcinoma and squamous cell carcinoma risk, the association persisted, confirming that presence of at least one variant allele remains informative in terms of predicting risk for developing a solar-induced skin lesion beyond that information wained through observation of pigmentation phenotype.
Resumo:
Patellar tendon ultrasound appearance is commonly used in clinical practice to diagnose patellar tendinopathy and guide management. Using a longitudinal study design we examined whether or not the presence of a hypoechoic ultrasonographic lesion in an asymptomatic patellar tendon conferred a risk for developing jumper's knee compared with a tendon that was ultrasonographically normal. Ultrasonographic, symptomatic and anthropometric assessment was completed at baseline and followup. Magnetic resonance imaging was performed on four tendons that resolved ultrasonographically in the study period. Forty-six patellar tendons were followed over 47 ± 11.8 months. Eighteen tendons were hypoechoic at baseline and 28 were ultrasonographically normal. Five tendons resolved ultrasonographically in the study period. Magnetic resonance imaging in four of these tendons was normal. Seven normal patellar tendons at baseline developed a hypoechoic area but only two became symptomatic. Analysis of ultrasonography at baseline and clinical outcome with Fisher's exact test shows there is no association between baseline ultrasound changes and symptoms at followup. In this study there is no statistically significant relationship between ultrasonographic patellar tendon abnormalities and clinical outcome in elite male athletes. Management of jumper's knee should not be solely based on ultrasonographic appearance; clinical assessment remains the cornerstone of appropriate management.
Resumo:
The incidence of Squamous Cell Carcinoma (SCG) is growing in certain populations to the extent that it is now the most common skin lesion in young men and women in high ultraviolet exposure regions such as Queensland. In terms of incidence up to 40% of the Australian population over 40 years of age is thought to possess the precancerous Solar Keratosis (SK) lesion and with a small, but significant, chance of progression into SCC, understanding the genetic events that play a role in this process is essential. The major aims of this study were to analyse whole blood derived samples for DNA aberrations in genes associated with tumour development and cellular maintenance, with the ultimate aim of identifying genes associated with non-melanoma skin cancer development. More specifically the first aim of this project was to analyse the SDHD and MMP12 genes via Dual-Labelled Probe Real-Time PCR for copy number aberrations in an affected Solar Keratosis and control cohort. It was found that 12 samples had identifiable copy-number aberrations in either the SDHD or MMP12 gene (this means that a genetic section of either of these two genes is aberrantly amplified or deleted), with five of the samples exhibiting aberrations in both genes. The significance of this study is the contribution to the knowledge of the genetic pathways that are malformed in the progression and development of the pre-cancerous skin lesion Solar Keratosis. © 2008 Springer Science+Business Media, LLC.
Resumo:
Purpose To determine the rate of recurrence and associated risk factors following the use of mitomycin C (MMC) and/or interferon alpha-2b (IFN) for management of non-invasive ocular surface squamous neoplasia (OSSN). Design Retrospective non-comparative interventional case series. Methods Clinical practice setting of 135 patients treated consecutively with topical MMC (0.4 mg/mL) and/or IFN (1 million units/mL) for OSSN observed for clinical recurrence. Results Clinical recurrences were diagnosed in 19 of 135 (14.1%) eyes following topical treatment. The mean time to recurrence was 17.2 months (range 4 - 61) with 14 (73.7%) recurring within a two year period. There was no greater risk of recurrence identified for variables including lesion size, lesion location, gender, age, treatment type or duration. Post-hoc log-Rank pairwise comparisons revealed that lesions initially treated using surgery alone had significantly reduced time to recurrence (21.1 ± 5.6 months) compared to previous topical treatment with MMC (with or without surgery) (29.6 ± 4.7 months) (p = 0.04) and primary OSSN (23.2 ± 1.8 months) (p = 0.09). Conclusions Topical MMC and IFN are an effective treatment modality for a wide range of non-invasive OSSN. Topical therapy avoids the morbidity of excisional surgery with equivalent or reduced recurrence rates and should be considered as primary therapy.
Resumo:
Importance Older men are at risk of dying of melanoma. Objective To assess attendance at and clinical outcomes of clinical skin examinations (CSEs) in older men exposed to a video-based behavioral intervention. Design, Setting, and Participants This was a behavioral randomized clinical trial of a video-based intervention in men aged at least 50 years. Between June 1 and August 31, 2008, men were recruited, completed baseline telephone interviews, and were than randomized to receive either a video-based intervention (n = 469) or brochures only (n = 461; overall response rate, 37.1%) and were again interviewed 7 months later (n = 870; 93.5% retention). Interventions Video on skin self-examination and skin awareness and written informational materials. The control group received written materials only. Main Outcomes and Measures Participants who reported a CSE were asked for the type of CSE (skin spot, partial body, or whole body), who initiated it, whether the physician noted any suspicious lesions, and, if so, how lesions were managed. Physicians completed a case report form that included the type of CSE, who initiated it, the number of suspicious lesions detected, how lesions were managed (excision, nonsurgical treatment, monitoring, or referral), and pathology reports after lesion excision or biopsy. Results Overall, 540 of 870 men (62.1%) self-reported a CSE since receiving intervention materials, and 321 of 540 (59.4%) consented for their physician to provide medical information (received for 266 of 321 [82.9%]). Attendance of any CSE was similar between groups (intervention group, 246 of 436 [56.4%]; control group, 229 of 434 [52.8%]), but men in the intervention group were more likely to self-report a whole-body CSE (154 of 436 [35.3%] vs 118 of 434 [27.2%] for control group; P = .01). Two melanomas, 29 squamous cell carcinomas, and 38 basal cell carcinomas were diagnosed, with a higher proportion of malignant lesions in the intervention group (60.0% vs 40.0% for controls; P = .03). Baseline attitudes, behaviors, and skin cancer history were associated with higher odds of CSE and skin cancer diagnosis. Conclusions and Relevance A video-based intervention may increase whole-body CSE and skin cancer diagnosis in older men. Trial Registration: anzctr.org.au Identifier: ACTRN12608000384358
Resumo:
Bone metastases are severely debilitating and have a significant impact on the quality of life of women with metastatic breast cancer. Treatment options are limited and in order to develop more targeted therapies, improved understanding of the complex mechanisms that lead to bone lesion development are warranted. Interestingly, whilst prostate-derived bone metastases are characterised by mixed or osteoblastic lesions, breast-derived bone metastases are characterised by osteolytic lesions, suggesting unique regulatory patterns. This study aimed to measure the changes in bone formation and bone resorption activity at two time-points (18 and 36 days) during development of the bone lesion following intratibial injection of MDA-MB-231 human breast cancer cells into the left tibiae of Severely Combined Immuno-Deficient (SCID) mice. The contralateral tibia was used as a control. Tibiae were extracted and processed for undecalcified histomorphometric analysis. We provide evidence that the early bone loss observed following exposure to MDA-MB-231 cells was due to a significant reduction in mineral apposition rate, rather than increased levels of bone resorption. This suggests that osteoblast activity was impaired in the presence of breast cancer cells, contrary to previous reports of osteoclast-dependent bone loss. Furthermore mRNA expression of Dickkopf Homolog 1 (DKK-1) and Noggin were confirmed in the MDA-MB-231 cell line, both of which antagonise osteoblast regulatory pathways. The observed bone loss following injection of cancer cells was due to an overall thinning of the trabecular bone struts rather than perforation of the bone tissue matrix (as measured by trabecular width and trabecular separation, respectively), suggesting an opportunity to reverse the cancer-induced bone changes. These novel insights into the mechanisms through which osteolytic bone lesions develop may be important in the development of new treatment strategies for metastatic breast cancer patients.
Resumo:
BACKGROUND: The objective of this study was to determine whether it is possible to predict driving safety in individuals with homonymous hemianopia or quadrantanopia based upon a clinical review of neuro-images that are routinely available in clinical practice. METHODS: Two experienced neuro-ophthalmologists viewed a summary report of the CT/MRI scans of 16 participants with homonymous hemianopic or quadrantanopic field defects which provided information regarding the site and extent of the lesion and made predictions regarding whether they would be safe/unsafe to drive. Driving safety was defined using two independent measures: (1) The potential for safe driving was defined based upon whether the participant was rated as having the potential for safe driving, determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist conducted just prior and (2) state recorded motor vehicle crashes (all crashes and at-fault). Driving safety was independently defined at the time of the study by state recorded motor vehicle crashes (all crashes and at-fault) recorded over the previous 5 years, as well as whether the participant was rated as having the potential for safe driving, determined through a standardized on-road driving assessment by a certified driving rehabilitation specialist. RESULTS: The ability to predict driving safety was highly variable regardless of the driving outcome measure, ranging from 31% to 63% (kappa levels ranged from -0.29 to 0.04). The level of agreement between the neuro-ophthalmologists was also only fair (kappa =0.28). CONCLUSIONS: The findings suggest that clinical evaluation of summary reports currently available neuro-images by neuro-ophthalmologists is not predictive of driving safety. Future research should be directed at identifying and/or developing alternative tests or strategies to better enable clinicians to make these predictions.
Resumo:
The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.