77 resultados para B ... n C ... f.
Resumo:
The European Early Lung Cancer (EUELC) project aims to determine if specific genetic alterations occurring in lung carcinogenesis are detectable in the respiratory epithelium. In order to pursue this objective, nonsmall cell lung cancer (NSCLC) patients with a very high risk of developing progressive lung cancer were recruited from 12 centres in eight European countries: France, Germany, southern Ireland, Italy, the Netherlands, Poland, Spain and the UK. In addition, NSCLC patients were followed up every 6 months for 36 months. A European Bronchial Tissue Bank was set up at the University of Liverpool (Liverpool, UK) to optimise the use of biological specimens. The molecular - pathological investigations were subdivided into specific work packages that were delivered by EUELC Partners. The work packages encompassed mutational analysis, genetic instability, methylation profiling, expression profiling utilising immunohistochemistry and chip-based technologies, as well as in-depth analysis of FHIT and RARβ genes, the telomerase catalytic subunit hTERT and genotyping of susceptibility genes in specific pathways. The EUELC project engendered a tremendous collaborative effort, and it enabled the EUELC Partners to establish protocols for assessing molecular biomarkers in early lung cancer with the view to using such biomarkers for early diagnosis and as intermediate end-points in future chemopreventive programmes. Copyright©ERS Journals Ltd 2009.
Resumo:
Importance of the field: Reactive oxygen species (ROS) occur as natural by-products of oxygen metabolism and have important cellular functions. Normally, the cell is able to maintain an adequate balance between the formation and removal of ROS either via anti-oxidants or through the use specific enzymatic pathways. However, if this balance is disturbed, oxidative stress may occur in the cell, a situation linked to the pathogenesis of many diseases, including cancer. Areas covered in this review: HDACs are important regulators of many oxidative stress pathways including those involved with both sensing and coordinating the cellular response to oxidative stress. In particular aberrant regulation of these pathways by histone deacetylases may play critical roles in cancer progression. What the reader will gain: In this review we discuss the notion that targeting HDACs may be a useful therapeutic avenue in the treatment of oxidative stress in cancer, using chronic obstructive pulmonary disease (COPD), NSCLC and hepatocellular carcinoma (HCC) as examples to illustrate this possibility. Take home message: Epigenetic mechanisms may be an important new therapeutic avenue for targeting oxidative stress in cancer. © 2010 Informa UK, Ltd.
Resumo:
Recent studies have demonstrated that angiogenesis and suppressed cell- mediated immunity (CMI) play a central role in the pathogenesis of malignant disease facilitating tumour growth, invasion and metastasis. In the majority of tumours, the malignant process is preceded by a pathological condition or exposure to an irritant which itself is associated with the induction of angiogenesis and/or suppressed CMI. These include: cigarette smoking, chronic bronchitis and lung cancer; chronic oesophagitis and oesophageal cancer; chronic viral infections such as human papilloma virus and ano-genital cancers, chronic hepatitis B and C and hepatocellular carcinoma, and Epstein- Barr virus (EBV) and lymphomas; chronic inflammatory conditions such as Crohn's disease and ulcerative colitis and colorectal cancer; asbestos exposure and mesothelioma and excessive sunlight exposure/sunburn and malignant melanoma. Chronic exposure to growth factors (insulin-like growth factor-I in acromegaly), mutations in tumour suppressor genes (TP53 in Li Fraumeni syndrome) and long-term exposure to immunosuppressive agents (cyclosporin A) may also give rise to similar environments and are associated with the development of a range of solid tumours. The increased blood supply would facilitate the development and proliferation of an abnormal clone or clones of cells arising as the result of: (a) an inherited genetic abnormality; and/or (b) acquired somatic mutations, the latter due to local production and/or enhanced delivery of carcinogens and mutagenic growth factors. With progressive detrimental mutations and growth-induced tumour hypoxia, the transformed cell, to a lesser or greater extent, may amplify the angiogenic process and CMI suppression, thereby facilitating further tumour growth and metastasis. There is accumulating evidence that long-term treatment with cyclo-oxygenase inhibitors (aspirin and indomethacin), cytokines such as interferon-α, anti-oestrogens (tamoxifen and raloxifene) and captopril significantly reduces the incidence of solid tumours such as breast and colorectal cancer. These agents are anti-angiogenic and, in the case of aspirin, indomethacin and interferon-α have proven immunomodulatory effects. Collectively these observations indicate that angiogenesis and suppressed CMI play a central role in the development and progression of malignant disease. (C) 2000 Elsevier Science Ltd.
Resumo:
Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between ‘less healthy’ and ‘healthy’ foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. ‘Minimal’ data collection will assess the differential price of ‘healthy’ and ‘less healthy’ foods; ‘expanded’ monitoring will assess the differential price of ‘healthy’ and ‘less healthy’ diets; and the ‘optimal’ approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of ‘healthy’ and ‘less healthy’ foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation.
Resumo:
This paper outlines a step-wise framework for monitoring foods and beverages provided or sold in publicly funded institutions. The focus is on foods in schools, but the framework can also be applied to foods provided or sold in other publicly funded institutions. Data collection and evaluation within this monitoring framework will consist of two components. In component I, information on existing food or nutrition policies and/or programmes within settings would be compiled. Currently, nutrition standards and voluntary guidelines associated with such policies/programmes vary widely globally. This paper, which provides a comprehensive review of such standards and guidelines, will facilitate institutional learnings for those jurisdictions that have not yet established them or are undergoing review of existing ones. In component II, the quality of foods provided or sold in public sector settings is evaluated relative to existing national or sub-national nutrition standards or voluntary guidelines. Where there are no (or only poor) standards or guidelines available, the nutritional quality of foods can be evaluated relative to standards of a similar jurisdiction or other appropriate standards. Measurement indicators are proposed (within ‘minimal’, ‘expanded’ and ‘optimal’ approaches) that can be used to monitor progress over time in meeting policy objectives, and facilitate comparisons between countries.
Resumo:
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 59 rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs. Published by Cold Spring Harbor Laboratory Press. Copyright © 2008 RNA Society.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
Microgrids (MG) enable the integration of low capacity renewable energy resources with distribution systems. A recently proposed protection scheme for MGs utilising undervoltage, High Impedance Fault (HIF) detection, directional protection modules, and communication links significantly reduces the fault clearing time compared to previous schemes. In this paper, the effect of replacing undervoltage protection with differential protection in a scheme that also contains HIF and directional protection modules is studied. The MG model used in this study includes a diesel, wind, and two photovoltaic (PV) microsources. The alternative protection schemes are evaluated by simulation. It is found that the protection scheme consisting of differential, HIF detection, and directional protection modules is more effective compared to the alternative in protecting the MG from some fault conditions such as the phase-A-to-ground, phase-B-to-C, and phase-B-to-C-to-ground.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
The policies and regulations governing the practice of state asset management have emerged as an urgent question among many countries worldwide for there is heightened awareness of the complex and crucial role that state assets play in public service provision. Indonesia is an example of such country, introducing a ‘big-bang’ reform in state asset management laws, policies, regulations, and technical guidelines. Indonesia exemplified its enthusiasm in reforming state asset management policies and practices through the establishment of the Directorate General of State Assets in 2006. The Directorate General of State Assets have stressed the new direction that it is taking state asset management laws and policies through the introduction of Republic of Indonesia Law Number 38 Year 2008, which is an amended regulation overruling Republic of Indonesia Law Number 6 Year 2006 on Central/Regional Government State Asset Management. Law number 38/2008 aims to further exemplify good governance principles and puts forward a ‘the highest and best use of assets’ principle in state asset management. The purpose of this study is to explore and analyze specific contributing influences to state asset management practices, answering the question why innovative state asset management policy implementation is stagnant. The methodology of this study is that of qualitative case study approach, utilizing empirical data sample of four Indonesian regional governments. Through a thematic analytical approach this study provides an in-depth analysis of each influencing factors to state asset management reform. Such analysis suggests the potential of an ‘excuse rhetoric’; whereby the influencing factors identified are a smoke-screen, or are myths that public policy makers and implementers believe in, as a means to ex-plain stagnant implementation of innovative state asset management practice. Thus this study offers deeper insights of the intricate web that influences state as-set management innovative policies to state asset management policy makers; to be taken into consideration in future policy writing.
Resumo:
Frondosins A−E, 1−5 (Figure 1), are a family of related marine sesquiterpenoids first isolated in their dextro-rotatory form from the sponge Dysidea frondosa.(1a) Additionally, levo-rotatory frondosins A and D were isolated from an unidentified Eurospongia species.(1b) Frondosins A−E are compounds of interest due to their promising interleukin-8 (IL-8) affinity and protein kinase C inhibition.(1a) IL-8 antagonists are of particular interest in view of their antiinflammatory,(2a) anti-HIV,(1b, 2b) and antitumor(2c-2f) properties. To date, frondosins A, B, and C have been synthesized.(3) Notwithstanding these successes, the frondosins have proved quite a formidable synthetic challenge, and as of yet, there has been no synthesis of frondosin D or E. In this report, we describe our approaches to the molecular scaffold of frondosins D. This work has culminated in a very effective means of producing the trimethylbicyclo[5.4.0]undecane ring system common to all frondosins (shown in bold, Figure 1).
Resumo:
Cytoreductive surgery and chemotherapy continue to be the mainstay of ovarian cancer treatment. However, as mortality from advanced ovarian cancer remains very high, novel therapies are required to be integrated into existing treatment regimens. Immunotherapy represents an alternative and rational therapeutic approach for ovarian cancer based on a body of evidence supporting a protective role of the immune system against these cancers, and on the clinical success of immunotherapy in other malignancies. Whether or not immunotherapy will have a role in the future management of ovarian cancer is too early to tell, but research in this field is active. This review will discuss recent clinical developments of selected immunotherapies for ovarian cancer which fulfil the following criteria: (i) they are antibody-based, (ii) target a distinct immunological pathway, and (iii) have reached the clinical trial stage. Specifically, the focus is on Catumaxomab (anti-EpCAM × anti-CD3), Abagovomab, Oregovomab (anti-CA125), Daclizumab (anti-CD25), Ipilimumab (anti-CTLA-4), and MXD-1105 (anti-PD-L1). Catumaxomab has reached phase III clinical trials and exhibits promise with reports, showing that it can cause a significant and sustained reduction in ascites. Phase I–III clinical trials continue to be conducted on the other antibodies, some of which have had encouraging reports. We will also provide our perspective on the future of immunotherapy for ovarian cancer, and how it may be best employed in treatment regimens.
Resumo:
Protein N-terminal acetylation (Nt-acetylation) is an important mediator of protein function, stability, sorting, and localization. Although the responsible enzymes are thought to be fairly well characterized, the lack of identified in vivo substrates, the occurrence of Nt-acetylation substrates displaying yet uncharacterized N-terminal acetyltransferase (NAT) specificities, and emerging evidence of posttranslational Nt-acetylation, necessitate the use of genetic models and quantitative proteomics. NatB, which targets Met-Glu-, Met-Asp-, and Met-Asn-starting protein N termini, is presumed to Nt-acetylate 15% of all yeast and 18% of all human proteins. We here report on the evolutionary traits of NatB from yeast to human and demonstrate that ectopically expressed hNatB in a yNatB-Δ yeast strain partially complements the natB-Δ phenotypes and partially restores the yNatB Nt-acetylome. Overall, combining quantitative N-terminomics with yeast studies and knockdown of hNatB in human cell lines, led to the unambiguous identification of 180 human and 110 yeast NatB substrates. Interestingly, these substrates included Met-Gln- N-termini, which are thus now classified as in vivo NatB substrates. We also demonstrate the requirement of hNatB activity for maintaining the structure and function of actomyosin fibers and for proper cellular migration. In addition, expression of tropomyosin-1 restored the altered focal adhesions and cellular migration defects observed in hNatB-depleted HeLa cells, indicative for the conserved link between NatB, tropomyosin, and actin cable function from yeast to human.
Resumo:
In 2004 the International Committee of Medical Journal Editors (ICMJE) issued a statement indicating that from 1 July 2005 registration in a publicly accessible trials registry would be a condition of publication in an ICMJE member journal. The World Health Organisation is coordinating the International Clinical Trials Registry Platform (ICTRP) as a means of providing a standardised framework for registration. This article considers the practical challenges and opportunities that arise from these developments and considers the relevance of trial registration for women and minorities and for developing countries.