738 resultados para Approximate Model Checking


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A service-oriented system is composed of independent software units, namely services, that interact with one another exclusively through message exchanges. The proper functioning of such system depends on whether or not each individual service behaves as the other services expect it to behave. Since services may be developed and operated independently, it is unrealistic to assume that this is always the case. This article addresses the problem of checking and quantifying how much the actual behavior of a service, as recorded in message logs, conforms to the expected behavior as specified in a process model.We consider the case where the expected behavior is defined using the BPEL industry standard (Business Process Execution Language for Web Services). BPEL process definitions are translated into Petri nets and Petri net-based conformance checking techniques are applied to derive two complementary indicators of conformance: fitness and appropriateness. The approach has been implemented in a toolset for business process analysis and mining, namely ProM, and has been tested in an environment comprising multiple Oracle BPEL servers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence exists that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication may stem from the fact that the repository describes variants of the same pro- cesses and/or because of copy/pasting activity throughout the lifetime of the repository. Previous work has put forward techniques for identifying duplicate fragments (clones) that can be refactored into shared subprocesses. However, these techniques are limited to finding exact clones. This paper analyzes the prob- lem of approximate clone detection and puts forward two techniques for detecting clusters of approximate clones. Experiments show that the proposed techniques are able to accurately retrieve clusters of approximate clones that originate from copy/pasting followed by independent modifications to the copied fragments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper establishes practical stability results for an important range of approximate discrete-time filtering problems involving mismatch between the true system and the approximating filter model. Practical stability is established in the sense of an asymptotic bound on the amount of bias introduced by the model approximation. Our analysis applies to a wide range of estimation problems and justifies the common practice of approximating intractable infinite dimensional nonlinear filters by simpler computationally tractable filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper establishes sufficient conditions to bound the error in perturbed conditional mean estimates derived from a perturbed model (only the scalar case is shown in this paper but a similar result is expected to hold for the vector case). The results established here extend recent stability results on approximating information state filter recursions to stability results on the approximate conditional mean estimates. The presented filter stability results provide bounds for a wide variety of model error situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new simulation methodology in order to obtain exact or approximate Bayesian inference for models for low-valued count time series data that have computationally demanding likelihood functions. The algorithm fits within the framework of particle Markov chain Monte Carlo (PMCMC) methods. The particle filter requires only model simulations and, in this regard, our approach has connections with approximate Bayesian computation (ABC). However, an advantage of using the PMCMC approach in this setting is that simulated data can be matched with data observed one-at-a-time, rather than attempting to match on the full dataset simultaneously or on a low-dimensional non-sufficient summary statistic, which is common practice in ABC. For low-valued count time series data we find that it is often computationally feasible to match simulated data with observed data exactly. Our particle filter maintains $N$ particles by repeating the simulation until $N+1$ exact matches are obtained. Our algorithm creates an unbiased estimate of the likelihood, resulting in exact posterior inferences when included in an MCMC algorithm. In cases where exact matching is computationally prohibitive, a tolerance is introduced as per ABC. A novel aspect of our approach is that we introduce auxiliary variables into our particle filter so that partially observed and/or non-Markovian models can be accommodated. We demonstrate that Bayesian model choice problems can be easily handled in this framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process mining encompasses the research area which is concerned with knowledge discovery from event logs. One common process mining task focuses on conformance checking, comparing discovered or designed process models with actual real-life behavior as captured in event logs in order to assess the “goodness” of the process model. This paper introduces a novel conformance checking method to measure how well a process model performs in terms of precision and generalization with respect to the actual executions of a process as recorded in an event log. Our approach differs from related work in the sense that we apply the concept of so-called weighted artificial negative events towards conformance checking, leading to more robust results, especially when dealing with less complete event logs that only contain a subset of all possible process execution behavior. In addition, our technique offers a novel way to estimate a process model’s ability to generalize. Existing literature has focused mainly on the fitness (recall) and precision (appropriateness) of process models, whereas generalization has been much more difficult to estimate. The described algorithms are implemented in a number of ProM plugins, and a Petri net conformance checking tool was developed to inspect process model conformance in a visual manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently pathological and illness-centric policy surrounds the evaluation of the health status of a person experiencing disability. In this research partnerships were built between disability service providers, community development organizations and disability arts organizations to build a translational evaluative methodology prior to implementation of an arts-based workshop that was embedded in a strengths-based approach to health and well-being. The model consisted of three foci: participation in a pre-designed drama-based workshop program; individualized assessment and evaluation of changing health status; and longitudinal analysis of participants changing health status in their public lives following the culmination of the workshop series. Participants (n = 15) were recruited through disability service providers and disability arts organizations to complete a 13-week workshop series and public performance. The study developed accumulative qualitative analysis tools and member-checking methods specific to the communication systems used by individual participants. Principle findings included increased confidence for verbal and non-verbal communicators; increased personal drive, ambition and goal-setting; increased arts-based skills including professional engagements as artists; demonstrated skills in communicating perceptions of health status to private and public spheres. Tangential positive observations were evident in the changing recreational, vocational and educational activities participants engaged with pre- and post- the workshop series; participants advocating for autonomous accommodation and health provision and changes in the disability service staff's culture. The research is an example of translational health methodologies in disability studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indirect inference (II) is a methodology for estimating the parameters of an intractable (generative) model on the basis of an alternative parametric (auxiliary) model that is both analytically and computationally easier to deal with. Such an approach has been well explored in the classical literature but has received substantially less attention in the Bayesian paradigm. The purpose of this paper is to compare and contrast a collection of what we call parametric Bayesian indirect inference (pBII) methods. One class of pBII methods uses approximate Bayesian computation (referred to here as ABC II) where the summary statistic is formed on the basis of the auxiliary model, using ideas from II. Another approach proposed in the literature, referred to here as parametric Bayesian indirect likelihood (pBIL), we show to be a fundamentally different approach to ABC II. We devise new theoretical results for pBIL to give extra insights into its behaviour and also its differences with ABC II. Furthermore, we examine in more detail the assumptions required to use each pBII method. The results, insights and comparisons developed in this paper are illustrated on simple examples and two other substantive applications. The first of the substantive examples involves performing inference for complex quantile distributions based on simulated data while the second is for estimating the parameters of a trivariate stochastic process describing the evolution of macroparasites within a host based on real data. We create a novel framework called Bayesian indirect likelihood (BIL) which encompasses pBII as well as general ABC methods so that the connections between the methods can be established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the existing algorithms for approximate Bayesian computation (ABC) assume that it is feasible to simulate pseudo-data from the model at each iteration. However, the computational cost of these simulations can be prohibitive for high dimensional data. An important example is the Potts model, which is commonly used in image analysis. Images encountered in real world applications can have millions of pixels, therefore scalability is a major concern. We apply ABC with a synthetic likelihood to the hidden Potts model with additive Gaussian noise. Using a pre-processing step, we fit a binding function to model the relationship between the model parameters and the synthetic likelihood parameters. Our numerical experiments demonstrate that the precomputed binding function dramatically improves the scalability of ABC, reducing the average runtime required for model fitting from 71 hours to only 7 minutes. We also illustrate the method by estimating the smoothing parameter for remotely sensed satellite imagery. Without precomputation, Bayesian inference is impractical for datasets of that scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a new method for performing Bayesian parameter inference and model choice for low count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel pseudo-marginal algorithm, which we refer to as alive SMC^2. The advantages of this approach over competing approaches is that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo and does not rely on potentially rough approximations. The algorithm is demonstrated on Markov process and integer autoregressive moving average models applied to real biological datasets of hospital-acquired pathogen incidence, animal health time series and the cumulative number of poison disease cases in mule deer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents a method for checking the conformance between an event log capturing the actual execution of a business process, and a model capturing its expected or normative execution. Given a business process model and an event log, the method returns a set of statements in natural language describing the behavior allowed by the process model but not observed in the log and vice versa. The method relies on a unified representation of process models and event logs based on a well-known model of concurrency, namely event structures. Specifically, the problem of conformance checking is approached by folding the input event log into an event structure, unfolding the process model into another event structure, and comparing the two event structures via an error-correcting synchronized product. Each behavioral difference detected in the synchronized product is then verbalized as a natural language statement. An empirical evaluation shows that the proposed method scales up to real-life datasets while producing more concise and higher-level difference descriptions than state-of-the-art conformance checking methods.