84 resultados para Angulação mésio-distal
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Utilizing a mono-specific antiserum produced in rabbits to hog kidney aromatic L-amino acid decarboxylase (AADC), the enzyme was localized in rat kidney by immunoperoxidase staining. AADC was located predominantly in the proximal convoluted tubules; there was also weak staining in the distal convoluted tubules and collecting ducts. An increase in dietary potassium or sodium intake produced no change in density or distribution of AADC staining in kidney. An assay of AADC enzyme activity showed no difference in cortex or medulla with chronic potassium loading. A change in distribution or activity of renal AADC does not explain the postulated dopaminergic modulation of renal function that occurs with potassium or sodium loading.
Resumo:
Persistent digital hyperthermia, presumably due to vasodilation, occurs during the developmental and acute stages of insulin-induced laminitis. The objectives of this study were to determine if persistent digital hyperthermia is the principal pathogenic mechanism responsible for the development of laminitis. The potent vasodilator, ATP-MgCl 2 was infused continuously into the distal phalanx of the left forefoot of six Standardbred racehorses for 48h via intra-osseous infusion to promote persistent digital hyperthermia. The right forefoot was infused with saline solution and acted as an internal control. Clinical signs of lameness at the walk were not detected at 0h, 24h or 48h post-infusion. Mean±SE hoof wall temperatures of the left forefoot (29.4±0.25°C) were higher (P<0.05) than those on the right (27.5±0.38°C). Serum insulin (15.0±2.89μIU/mL) and blood glucose (5.4±0.22mM) concentrations remained unchanged during the experiment. Histopathological evidence of laminitis was not detected in any horse. The results demonstrated that digital vasodilation up to 30 °C for a period of 48. h does not trigger laminitis in the absence of hyperinsulinaemia. Thus, although digital hyperthermia may play a role in the pathogenesis of laminitis, it is not the sole mechanism involved.
Resumo:
The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115 × 10 6 m 3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35 min, giving peak pyroclastic flow flux of 66 × 10 3 m 3 s -1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7 km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40 km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200 m of topography and eroded up to 20 cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210 × 10 6 m 3) Soufrière Hills dome collapse in July 2003.
Resumo:
Removal of well-fixed cement at revision surgery risks bone loss, cortical perforation and fracture, is time-consuming, technically demanding and carries increased risks for the patient. The cement-in-cement technique avoids these problems and when used appropriately has given favourable results at our centre when used on both the femoral and acetabular sides of the articulation. A modified technique has also been used in selected cases of infection and peri-prosthetic fracture. This chapter highlights the results to date and the operative techniques employed. It is essential to recognise that this technique relies fundamentally on the presence of a well-fixed cement mantle, and it is imperative that the criteria laid out are adhered to in order to achieve success. If there is loosening or lysis on the femoral side extending distal to the lesser trochanter or around more than just the periphery of the acetabular cement mantle, then alternative revision techniques should be employed.
Resumo:
This contribution provides an analysis of the 1995–2009 eruptive period of Soufrière Hills volcano (Montserrat) from a unique offshore perspective. The methodology is based on five repeated swath bathymetric surveys. The difference between the 2009 and 1999 bathymetry suggests that at least 395 Mm3 of material has entered the sea. This proximal deposit reaches 95 m thick and extends ∼7km from shore. However, the difference map does not include either the finer distal part of the submarine deposit or the submarine part of the delta close to the shoreline. We took both contributions into account by using additional information such as that from marine sediment cores. By March 2009, at least 65% of the material erupted throughout the eruption has been deposited into the sea. This work provides an excellent basis for assessing the future activity of the Soufrière Hills volcano (including potential collapse), and other volcanoes on small islands.
Resumo:
The Soufrière Hills volcano, Montserrat, West Indies, has undergone a series of dome growth and collapse events since the eruption began in 1995. Over 90% of the pyroclastic material produced has been deposited into the ocean. Sampling of these submarine deposits reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the sea. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep-sided, near-linear ridges that intercalate to form a submarine fan. The finer ash-grade components are mixed into the overlying water column to form turbidity currents that flow over distances >30 km from the source. The total volume of pyroclastic material off the east coast of Montserrat exceeds 280 × 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites.
Resumo:
Background. Previous studies report an increase in thoracic kyphosis after anterior approaches and a flattening of sagittal contours following posterior approaches. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality. Methods. A prospective study of 30 Lenke 1 adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior spinal fusion (TASF) was performed. Participants had ethically approved low dose CT scans at minimum 24 months after surgery in addition to their standard care following surgery. The change in sagittal contours on supine CT was compared to standing radiographic measurements of the same patients and with previous studies. Inter-observer variability was assessed as well as whether hypokyphotic and normokyphotic patient groups responded differently to the thoracoscopic anterior approach. Results. Mean T5-12 kyphosis Cobb angle increased by 11.8 degrees and lumbar lordosis increased by 5.9 degrees on standing radiographs two years after surgery. By comparison, CT measurements of kyphosis and lordosis increased by 12.3 degrees and 7.0 degrees respectively. 95% confidence intervals for inter-observer variability of sagittal contour measurements on supine CT ranged between 5-8 degrees. TASF had a slightly greater corrective effect on patients who were hypokyphotic before surgery compared with those who were normokyphotic. Conclusions. Restoration of sagittal profile is an important goal of scoliosis surgery, but reliable measurement with radiographs suffers from poor endplate clarity. TASF significantly improves thoracic kyphosis and lumbar lordosis while preserving proximal and distal junctional alignment in thoracic AIS patients. Supine CT allows greater endplate clarity for sagittal Cobb measurements and linear relationships were found between supine CT and standing radiographic measurements. In this study, improvements in sagittal kyphosis and lordosis following surgery were in agreement with prior anterior surgery studies, and add to the current evidence suggesting that anterior correction is more capable than posterior approaches of addressing the sagittal component of both the instrumented and adjacent non instrumented segments following surgical correction of progressive Lenke 1 idiopathic scoliosis.
Resumo:
Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone contours, and depending on the material of the plate, different outcomes have been reported along with postoperative complications. A comparative analysis of Stainless Steel 316L and Ti-6Al-4V alloys was carried to estimate the safe bending limit for appropriate fits. The results from the ANSYS FEA simulations were validated with experiments based on ASTM F382-99. It is found that SS316L is better suited for large deformations (up to 16˚ in proximal tip and 7.5˚ in distal end) and Ti for smaller deformation contours (up to 3˚ in proximal tip and 1.8˚ in distal end). The results of this study have profound implications for the choice of plates based on preliminary radiographical fracture examinations to ensure better fixation and higher rates of union of distal tibial fractures.
Resumo:
This systematic mixed studies review aimed at synthesizing evidence from studies related to the influences on the work participation of people with refugee status (PWRS). The review focused on the role of proximal socio-structural barriers on work participation by PWRS while foregrounding related distal, intermediate, proximal, and meta-systemic influences. For the systematic search of the literature, we focused on databases that addressed work, well-being, and social policy in refugee populations, including, Medline, CINAHL, PsycInfo, Web of Science, Scopus, and Sociological Abstracts. Of the studies reviewed, 16 of 39 met the inclusion criteria and were retained for the final analysis. We performed a narrative synthesis of the evidence on barriers to work participation by PWRS, interlinking clusters of barriers potent to their effects on work participation. Findings from the narrative synthesis suggest that proximal factors, those at point of entry to the labor market, influence work participation more directly than distal or intermediate factors. Distal and intermediate factors achieve their effects on work participation by PWRS primarily through meta-systemic interlinkages, including host-country documentation and refugee administration provisions.
Resumo:
The androgen receptor (AR) signaling pathway is a common therapeutic target for prostate cancer, because it is critical for the survival of both hormone-responsive and castrate-resistant tumor cells. Most of the detailed understanding that we have of AR transcriptional activation has been gained by studying classical target genes. For more than two decades, Kallikrein 3 (KLK3) (prostate-specific antigen) has been used as a prototypical AR target gene, because it is highly androgen responsive in prostate cancer cells. Three regions upstream of the KLK3 gene, including the distal enhancer, are known to contain consensus androgen-responsive elements required for AR-mediated transcriptional activation. Here, we show that KLK3 is one of a specific cluster of androgen-regulated genes at the centromeric end of the kallikrein locus with enhancers that evolved from the long terminal repeat (LTR) (LTR40a) of an endogenous retrovirus. Ligand-dependent recruitment of the AR to individual LTR-derived enhancers results in concurrent up-regulation of endogenous KLK2, KLK3, and KLKP1 expression in LNCaP prostate cancer cells. At the molecular level, a kallikrein-specific duplication within the LTR is required for maximal androgen responsiveness. Therefore, KLK3 represents a subset of target genes regulated by repetitive elements but is not typical of the whole spectrum of androgen-responsive transcripts. These data provide a novel and more detailed understanding of AR transcriptional activation and emphasize the importance of repetitive elements as functional regulatory units
Resumo:
The current gold standard for the design of orthopaedic implants is 3D models of long bones obtained using computed tomography (CT). However, high-resolution CT imaging involves high radiation exposure, which limits its use in healthy human volunteers. Magnetic resonance imaging (MRI) is an attractive alternative for the scanning of healthy human volunteers for research purposes. Current limitations of MRI include difficulties of tissue segmentation within joints and long scanning times. In this work, we explore the possibility of overcoming these limitations through the use of MRI scanners operating at a higher field strength. We quantitatively compare the quality of anatomical MR images of long bones obtained at 1.5 T and 3 T and optimise the scanning protocol of 3 T MRI. FLASH images of the right leg of five human volunteers acquired at 1.5 T and 3 T were compared in terms of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). The comparison showed a relatively high CNR and SNR at 3 T for most regions of the femur and tibia, with the exception of the distal diaphyseal region of the femur and the mid diaphyseal region of the tibia. This was accompanied by an ~65% increase in the longitudinal spin relaxation time (T1) of the muscle at 3 T compared to 1.5 T. The results suggest that MRI at 3 T may be able to enhance the segmentability and potentially improve the accuracy of 3D anatomical models of long bones, compared to 1.5 T. We discuss how the total imaging times at 3 T can be kept short while maximising the CNR and SNR of the images obtained.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.
Resumo:
The dermo-epidermal interface that connects the equine distal phalanx to the cornified hoof wall withstands great biomechanical demands, but is also a region where structural failure often ensues as a result of laminitis. The cytoskeleton in this region maintains cell structure and facilitates intercellular adhesion, making it likely to be involved in laminitis pathogenesis, although it is poorly characterized in the equine hoof lamellae. The objective of the present study was to identify and quantify the cytoskeletal proteins present in the epidermal and dermal lamellae of the equine hoof by proteomic techniques. Protein was extracted from the mid-dorsal epidermal and dermal lamellae from the front feet of 5 Standardbred geldings and 1 Thoroughbred stallion. Mass spectrometry-based spectral counting techniques, PAGE, and immunoblotting were used to identify and quantify cytoskeletal proteins, and indirect immunofluorescence was used for cellular localization of K14 and K124 (where K refers to keratin). Proteins identified by spectral counting analysis included 3 actin microfilament proteins; 30 keratin proteins along with vimentin, desmin, peripherin, internexin, and 2 lamin intermediate filament proteins; and 6 tubulin microtubule proteins. Two novel keratins, K42 and K124, were identified as the most abundant cytoskeletal proteins (22.0 ± 3.2% and 23.3 ± 4.2% of cytoskeletal proteins, respectively) in equine hoof lamellae. Immunoreactivity to K14 was localized to the basal cell layer, and that to K124 was localized to basal and suprabasal cells in the secondary epidermal lamellae. Abundant proteins K124, K42, K14, K5, and α1-actin were identified on 1- and 2-dimensional polyacrylamide gels and aligned with the results of previous studies. Results of the present study provide the first comprehensive analysis of cytoskeletal proteins present in the equine lamellae by using mass spectrometry-based techniques for protein quantification and identification.