58 resultados para Angles (Geometry)
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
A qualitative analysis of the expected dilatation strain field in the vicinity of an array of grain-boundary (GB) dislocations is presented. The analysis provides a basis for the prediction of the critical current densities (jc) across low-angle YBa2Cu3O7- (YBCO) GBs as a function of their energy. The introduction of the GB energy allows the extension of the analysis to high-angle GBs using established models which predict the GB energy as a function of misorientation angle. The results are compared to published data for jc across [001]-tilt YBCO GBs for the full range of misorientations, showing a good fit. Since the GB energy is directly related to the GB structure, the analysis may allow a generalization of the scaling behavior of jc with the GB energy. © 1995 The American Physical Society.
Resumo:
An electropolishing method has been developed for preparing sharp needles from polycrystalline YBa2Cu3O7-δ by modifying a recipe for TEM specimen preparation. The method is characterized by a polishing temperature of below 0°C, a non-acidic electrolyt and an even removal of the constituent phases. An approach was employed of combining I-V measurements for polishing process and microscopical observation of surface morphology in finding optimum polishing conditions. TEM evidenced that no preferential attack appeared to grain boundaries. X-ray diffractometry and electron diffraction implied that no change in oxygen content occurred during electropolishing. The sharpness of the tip was examined by field-ion microscopy.
Resumo:
Purpose To investigate hyperopic shifts and the oblique (or 45-degree/135-degree) component of astigmatism at large angles in the horizontal visual field using the Hartmann-Shack technique. Methods The adult participants consisted of 6 hypermetropes, 13 emmetropes and 11 myopes. Measurements were made with a modified COAS-HD Hartmann-Shack aberrometer across T60 degrees along the horizontal visual field in 5-degree steps. Eyes were dilated with 1% cyclopentolate. Peripheral refraction was estimated as mean spherical (or spherical equivalent) refraction, with/against the rule of astigmatism and oblique astigmatism components, and as horizontal and vertical refraction components based on 3-mm major diameter elliptical pupils. Results Thirty percent of eyes showed a pattern that was a combination of type IV and type I patterns of Rempt et al. (Rempt F, Hoogerheide J, Hoogenboom WP. Peripheral retinoscopy and the skiagram. Ophthalmologica 1971;162:1Y10), which shows the characteristics of type IV (relative hypermetropia along the vertical meridian and relative myopia along the horizontal meridian) out to an angle of between 40 and 50 degrees before behaving like type I (both meridians show relative hypermetropia). We classified this pattern as type IV/I. Seven of 13 emmetropes had this pattern. As a group, there was no significant variation of the oblique component of astigmatism with angle, but about one-half of the eyes showed significant positive slopes (more positive or less negative values in the nasal field than in the temporal field) and one-fourth showed significant negative slopes. Conclusions It is often considered that a pattern of relative peripheral hypermetropia predisposes to the development of myopia. In this context, the finding of a considerable portion of emmetropes with the IV/I pattern suggests that it is unlikely that refraction at visual field angles beyond 40 degrees from fixation contributes to myopia development.
Resumo:
Objective This study compared the primary stability of two commercially available acetabular components from the same manufacturer, which differ only in geometry; a hemispherical and a peripherally enhanced design (peripheral self-locking (PSL)). The objective was to determine whether altered geometry resulted in better primary stability. Methods Acetabular components were seated with 0.8 mm to 2 mm interference fits in reamed polyethylene bone substrate of two different densities (0.22 g/cm3 and 0.45 g/cm3). The primary stability of each component design was investigated by measuring the peak failure load during uniaxial pull-out and tangential lever-out tests. Results There was no statistically significant difference in seating force (p = 0.104) or primary stability (pull-out p = 0.171, lever-out p = 0.087) of the two components in the low-density substrate. Similarly, in the high-density substrate, there was no statistically significant difference in the peak pull-out force (p = 0.154) or lever-out moment (p = 0.574) between the designs. However, the PSL component required a significantly higher seating force thanthe hemispherical cup in the high-density bone analogue (p = 0.006). Conclusions Higher seating forces associated with the PSL design may result in inadequate seating and increased risk of component malpositioning or acetabular fracture in the intra-operative setting in high-density bone stock. Our results, if translated clinically, suggest that a purely hemispherical geometry may have an advantage over a peripherally enhanced geometry in high density bone stock.
Resumo:
A large number of methods have been published that aim to evaluate various components of multi-view geometry systems. Most of these have focused on the feature extraction, description and matching stages (the visual front end), since geometry computation can be evaluated through simulation. Many data sets are constrained to small scale scenes or planar scenes that are not challenging to new algorithms, or require special equipment. This paper presents a method for automatically generating geometry ground truth and challenging test cases from high spatio-temporal resolution video. The objective of the system is to enable data collection at any physical scale, in any location and in various parts of the electromagnetic spectrum. The data generation process consists of collecting high resolution video, computing accurate sparse 3D reconstruction, video frame culling and down sampling, and test case selection. The evaluation process consists of applying a test 2-view geometry method to every test case and comparing the results to the ground truth. This system facilitates the evaluation of the whole geometry computation process or any part thereof against data compatible with a realistic application. A collection of example data sets and evaluations is included to demonstrate the range of applications of the proposed system.
Resumo:
For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.
Resumo:
Cells respond to various biochemical and physical cues during wound–healing and tumour progression. In vitro assays used to study these processes are typically conducted in one particular geometry and it is unclear how the assay geometry affects the capacity of cell populations to spread, or whether the relevant mechanisms, such as cell motility and cell proliferation, are somehow sensitive to the geometry of the assay. In this work we use a circular barrier assay to characterise the spreading of cell populations in two different geometries. Assay 1 describes a tumour–like geometry where a cell population spreads outwards into an open space. Assay 2 describes a wound–like geometry where a cell population spreads inwards to close a void. We use a combination of discrete and continuum mathematical models and automated image processing methods to obtain independent estimates of the effective cell diffusivity, D, and the effective cell proliferation rate, λ. Using our parameterised mathematical model we confirm that our estimates of D and λ accurately predict the time–evolution of the location of the leading edge and the cell density profiles for both assay 1 and assay 2. Our work suggests that the effective cell diffusivity is up to 50% lower for assay 2 compared to assay 1, whereas the effective cell proliferation rate is up to 30% lower for assay 2 compared to assay 1.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc...
Resumo:
A robust visual tracking system requires an object appearance model that is able to handle occlusion, pose, and illumination variations in the video stream. This can be difficult to accomplish when the model is trained using only a single image. In this paper, we first propose a tracking approach based on affine subspaces (constructed from several images) which are able to accommodate the abovementioned variations. We use affine subspaces not only to represent the object, but also the candidate areas that the object may occupy. We furthermore propose a novel approach to measure affine subspace-to-subspace distance via the use of non-Euclidean geometry of Grassmann manifolds. The tracking problem is then considered as an inference task in a Markov Chain Monte Carlo framework via particle filtering. Quantitative evaluation on challenging video sequences indicates that the proposed approach obtains considerably better performance than several recent state-of-the-art methods such as Tracking-Learning-Detection and MILtrack.
Resumo:
Introduction Standing radiographs are the ‘gold standard’ for clinical assessment of adolescent idiopathic scoliosis (AIS), with the Cobb Angle used to measure the severity and progression of the scoliotic curve. Supine imaging modalities can provide valuable 3D information on scoliotic anatomy, however, due to changes in gravitational loading direction, the geometry of the spine alters between the supine and standing position which in turn affects the Cobb Angle measurement. Previous studies have consistently reported a 7-10° [1-3] Cobb Angle increase from supine to standing, however, none have reported the effect of endplate pre-selection and which (if any) curve parameters affect the supine to standing Cobb Angle difference. Methods Female AIS patients with right-sided thoracic major curves were included in the retrospective study. Clinically measured Cobb Angles from existing standing coronal radiographs and fulcrum bending radiographs [4] were compared to existing low-dose supine CT scans taken within 3 months of the reference radiograph. Reformatted coronal CT images were used to measure Cobb Angle variability with and without endplate pre-selection (end-plates selected on the radiographs used on the CT images). Inter and intra-observer measurement variability was assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb Angle change and patient characteristics (SPSS, v.21, IBM, USA). Results Fifty-two patients were included, with mean age of 14.6 (SD 1.8) years; all curves were Lenke Type 1 with mean Cobb Angle on supine CT of 42° (SD 6.4°) and 52° (SD 6.7°) on standing radiographs. The mean fulcrum bending Cobb Angle for the group was 22.6° (SD 7.5°). The 10° increase from supine to standing is consistent with existing literature. Pre-selecting vertebral endplates was found to increase the Cobb Angle difference by a mean 2° (range 0-9°). Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb Angle change with: fulcrum flexibility (p=0.001), age (p=0.027) and standing Cobb Angle (p<0.001). In patients with high fulcrum flexibility scores, the supine to standing Cobb Angle change was as great as 20°.The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusion There is a statistically significant relationship between supine to standing Cobb Angle change and fulcrum flexibility. Therefore, this difference can be considered a measure of spinal flexibility. Pre-selecting vertebral endplates causes only minor changes.
Resumo:
Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Background Supine imaging modalities provide valuable 3D information on scoliotic anatomy, but the altered spine geometry between the supine and standing positions affects the Cobb angle measurement. Previous studies report a mean 7°-10° Cobb angle increase from supine to standing, but none have reported the effect of endplate pre-selection or whether other parameters affect this Cobb angle difference. Methods Cobb angles from existing coronal radiographs were compared to those on existing low-dose CT scans taken within three months of the reference radiograph for a group of females with adolescent idiopathic scoliosis. Reformatted coronal CT images were used to measure supine Cobb angles with and without endplate pre-selection (end-plates selected from the radiographs) by two observers on three separate occasions. Inter and intra-observer measurement variability were assessed. Multi-linear regression was used to investigate whether there was a relationship between supine to standing Cobb angle change and eight variables: patient age, mass, standing Cobb angle, Risser sign, ligament laxity, Lenke type, fulcrum flexibility and time delay between radiograph and CT scan. Results Fifty-two patients with right thoracic Lenke Type 1 curves and mean age 14.6 years (SD 1.8) were included. The mean Cobb angle on standing radiographs was 51.9° (SD 6.7). The mean Cobb angle on supine CT images without pre-selection of endplates was 41.1° (SD 6.4). The mean Cobb angle on supine CT images with endplate pre-selection was 40.5° (SD 6.6). Pre-selecting vertebral endplates increased the mean Cobb change by 0.6° (SD 2.3, range −9° to 6°). When free to do so, observers chose different levels for the end vertebrae in 39% of cases. Multi-linear regression revealed a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility (p = 0.001), age (p = 0.027) and standing Cobb angle (p < 0.001). The 95% confidence intervals for intra-observer and inter-observer measurement variability were 3.1° and 3.6°, respectively. Conclusions Pre-selecting vertebral endplates causes minor changes to the mean supine to standing Cobb change. There is a statistically significant relationship between supine to standing Cobb change and fulcrum flexibility such that this difference can be considered a potential alternative measure of spinal flexibility.
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.
Resumo:
Red blood cells (RBCs) are nonnucleated liquid capsules, enclosed in deformable viscoelastic membranes with complex three dimensional geometrical structures. Generally, RBC membranes are highly incompressible and resistant to areal changes. However, RBC membranes show a planar shear deformation and out of plane bending deformation. The behaviour of RBCs in blood vessels is investigated using numerical models. All the characteristics of RBC membranes should be addressed to develop a more accurate and stable model. This article presents an effective methodology to model the three dimensional geometry of the RBC membrane with the aid of commercial software COMSOL Multiphysics 4.2a and Fortran programming. Initially, a mesh is generated for a sphere using the COMSOL Multiphysics software to represent the RBC membrane. The elastic energy of the membrane is considered to determine a stable membrane shape. Then, the actual biconcave shape of the membrane is obtained based on the principle of virtual work, when the total energy is minimised. The geometry of the RBC membrane could be used with meshfree particle methods to simulate motion and deformation of RBCs in micro-capillaries