108 resultados para Anatomy.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organ printing techniques offer the potential to produce living 3D tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations along multiple axes with high geometric complexity can be obtained.. The level of control offered by these technologies to develop printed tissues will allow tissue engineers to better study factors that modulate tissue formation and function, and provide a valuable tool to study the effect of anatomy on graft performance. In this chapter we discuss the history behind substrate patterning and cell and organ printing, and the rationale for developing organ printing techniques with respect to limitations of current clinical tissue engineering strategies to effectively repair damaged tissues. We discuss current 2-dimensional and 3-dimesional strategies for assembling cells as well as the necessary support materials such as hydrogels, bioinks and natural and synthetic polymers adopted for organ printing research. Furthermore, given the current state-of-the-art in organ printing technologies, we discuss some of their limitations and provide recommendations for future developments in this rapidly growing field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this paper is preparing research for dissemination by mainstream print, broadcast, and online media. While the rise of the blogosphere and social media is proving an effective way of reaching niche audiences, my own research reached such an audience through traditional media. The first major study of Australian horror cinema, my PhD thesis A Dark New World: Anatomy of Australian Horror Films, generated strong interest from horror movie fans, film scholars, and filmmakers. I worked closely with the Queensland University of Technology’s (QUT) public relations unit to write two separate media releases circulated on October 13, 2008 and October 14, 2009. This chapter reflects upon the process of working with the media and provides tips for reaching audiences, particularly in terms of strategically planning outcomes. It delves into the background of my study which would later influence my approach to the media, the process of drafting media releases, and key outcomes and benefits from popularising research. A key lesson from this experience is that redeveloping research for the media requires a sharp writing style, letting go of academic justification, catchy quotes, and an ability to distil complex details into easy-to-understand concepts. Although my study received strong media coverage, and I have since become a media commentator, my experiences also revealed a number of pitfalls that are likely to arise for other researchers keen on targeting media coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Luxury is a quality that is difficult to define as the historical concept of luxury appears to be both dynamic and culturally specific. The everyday definition explains a ‘luxury’ in relation to a necessity: a luxury (product or service) is defined as something that consumers want rather than need. However, the growth of global markets has seen a boom in what are now referred to as ‘luxury brands’. This branding of products as luxury has resulted in a change in the way consumers understand luxury goods and services. In their attempts to characterize a luxury brand, Fionda & Moore in their article “The anatomy of a Luxury Brand” summarize a range of critical conditions that are in addition to product branding “... including product and design attributes of quality, craftsmanship and innovative, creative and unique products” (Fionda & Moore, 2009). For the purposes of discussing fashion design however, quality and craftsmanship are inseparable while creativity and innovation exist under different conditions. The terms ‘creative’ and ‘innovative’ are often used inter-changeably and are connected with most descriptions of the design process, defining ‘design’ and ‘fashion’ in many cases. Christian Marxt and Fredrik Hacklin identify this condition in their paper “Design, product development, innovation: all the same in the end?”(Marxt & Hacklin, 2005) and suggest that design communities should be aware that the distinction between these terms, whilst once quite definitive, is becoming narrow to a point where they will mean the same thing. In relation to theory building in the discipline this could pose significant problems. Brett Richards (2003) identifies innovation as different from creativity in that innovation aims to transform and implement rather than simply explore and invent. Considering this distinction, in particular relation to luxury branding, may affect the way in which design can contribute to a change in the way luxury fashion goods might be perceived in a polarised fashion market, namely suggesting that ‘luxury’ is what consumers need rather than the ‘pile it high, sell it cheap’ fashion that the current market dynamic would indicate they want. This paper attempts to explore the role of innovation as a key contributing factor in luxury concepts, in particular the relationship between innovation and creativity, the conditions which enable innovation, the role of craftsmanship in innovation and design innovation in relation to luxury fashion products. An argument is presented that technological innovation can be demonstrated as a common factor in the development of luxury fashion product and that the connection between designer and maker will play an important role in the development of luxury fashion goods for a sustainable fashion industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Almost 90% of Australian mothers are exclusively breastfeeding when they discharge from maternity hospitals but by six months of age breastfeeding infants have reduced to 32% nationally and 19% in Queensland, far below the national target of 80%. Many factors influence the choice to breastfeed, including health care provision, therefore the knowledge and attitudes of paediatric nurses have the potential to affect breastfeeding duration. Aims: To assess current breastfeeding knowledge and attitudes of paediatric nurses in metropolitan and regional Queensland settings. Method: The study used a cross-sectional survey design. The tool was developed from several documented health professional questionnaires about breastfeeding, with permission from authors. Survey items relating breastfeeding physiology, factors relating to breastfeeding success, and local, national and international policies were also included. Ethics approval was granted from the appropriate Ethics Committees to conduct the survey through tertiary metropolitan and regional hospital settings. Results: A total of 241 surveys were returned, achieving a response rate of 53%. Nurses acknowledged breastmilk as the best source of nutrition for infants (99%, n=238) and that mothers should be encouraged to breastfeed (92%, n=221). However, many respondents considered infant formula a nutritional equivalent (44%, n=105) and (47%, n=113) were unaware that supplemental formulas interfered with successful breastfeeding. Most nurses recognised that stress (e.g. infant hospitalisation) impacts on the success of breastfeeding (90%, n=216). Knowledge of breastfeeding anatomy and physiology was poor and a substantial number of nurses did not identify correct attachment in response to two diagrammatic representations (76%, n=183 and 45%, n=109). Survey results demonstrated deficiencies in knowledge that would impact on support provided to breastfeeding mothers. Knowledge deficits were also identified relating to local, national and international policies and protocols concerning breastfeeding and breastmilk substitutes. Conclusion: Breastfeeding knowledge and attitudes were exceptional in areas related to general breastfeeding knowledge. However, in areas directly related to nursing practice, considerable deficits in paediatric nurses' knowledge and attitudes were identified. Lack of appropriate skills, knowledge and varying attitudes amongst paediatric nurses has the potential to negatively impact on the education, advice and support provided to breastfeeding mothers and their families whilst their infant is in hospital. These study findings will guide future research and strategies to improve knowledge and policy statements to assist paediatric nurses in fulfilling their role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: In vitro investigations have demonstrated the importance of the ribcage in stabilising the thoracic spine. Surgical alterations of the ribcage may change load-sharing patterns in the thoracic spine. Computer models are used in this study to explore the effect of surgical disruption of the rib-vertebrae connections on ligament load-sharing in the thoracic spine. Methods: A finite element model of a T7-8 motion segment, including the T8 rib, was developed using CT-derived spinal anatomy for the Visible Woman. Both the intact motion segment and the motion segment with four successive stages of destabilization (discectomy and removal of right costovertebral joint, right costotransverse joint and left costovertebral joint) were analysed for a 2000Nmm moment in flexion/extension, lateral bending and axial rotation. Joint rotational moments were compared with existing in vitro data and a detailed investigation of the load sharing between the posterior ligaments carried out. Findings: The simulated motion segment demonstrated acceptable agreement with in vitro data at all stages of destabilization. Under lateral bending and axial rotation, the costovertebral joints were of critical importance in resisting applied moments. In comparison to the intact joint, anterior destabilization increases the total moment contributed by the posterior ligaments. Interpretation: Surgical removal of the costovertebral joints may lead to excessive rotational motion in a spinal joint, increasing the risk of overload and damage to the remaining ligaments. The findings of this study are particularly relevant for surgical procedures involving rib head resection, such as some techniques for scoliosis deformity correction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Additive manufacturing techniques offer the potential to fabricate organized tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations of cells along multiple axes with high geometric complexity in combination with different biomaterials can be generated. The level of control offered by these computer-controlled technologies to design and fabricate tissues will accelerate our understanding of the governing factors of tissue formation and function. Moreover, it will provide a valuable tool to study the effect of anatomy on graft performance. In this review, we discuss the rationale for engineering tissues and organs by combining computer-aided design with additive manufacturing technologies that encompass the simultaneous deposition of cells and materials. Current strategies are presented, particularly with respect to limitations due to the lack of suitable polymers, and requirements to move the current concepts to practical application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A total histological grade does not necessarily distinguish between different manifestations of cartilage damage or degeneration. An accurate and reliable histological assessment method is required to separate normal and pathological tissue within a joint during treatment of degenerative joint conditions and to sub-classify the latter in meaningful ways. The Modified Mankin method may be adaptable for this purpose. We investigated how much detail may be lost by assigning one composite score/grade to represent different degenerative components of the osteoarthritic condition. We used four ovine injury models (sham surgery, anterior cruciate ligament/medial collateral ligament instability, simulated anatomic anterior cruciate ligament reconstruction and meniscal removal) to induce different degrees and potentially 'types' (mechanisms) of osteoarthritis. Articular cartilage was systematically harvested, prepared for histological examination and graded in a blinded fashion using a Modified Mankin grading method. Results showed that the possible permutations of cartilage damage were significant and far more varied than the current intended use that histological grading systems allow. Of 1352 cartilage specimens graded, 234 different manifestations of potential histological damage were observed across 23 potential individual grades of the Modified Mankin grading method. The results presented here show that current composite histological grading may contain additional information that could potentially discern different stages or mechanisms of cartilage damage and degeneration in a sheep model. This approach may be applicable to other grading systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current complication rates for adolescent scoliosis surgery necessitate the development of better surgical planning tools to improve outcomes. Here we present our approach to developing finite element models of the thoracolumbar spine for deformity surgery simulation, with patient-specific model anatomy based on low-dose pre-operative computed tomography scans. In a first step towards defining patient-specific tissue properties, an initial 'benchmark' set of properties were used to simulate a clinically performed pre-operative spinal flexibility assessment, the fulcrum bending radiograph. Clinical data for ten patients were compared with the simulated results for this assessment and in cases where these data differed by more than 10%, soft tissue properties for the costo-vertebral joint (CVJt) were altered to achieve better agreement. Results from these analyses showed that changing the CVJt stiffness resulted in acceptable agreement between clinical and simulated flexibility in two of the six cases. In light of these results and those of our previous studies in this area, it is suggested that spinal flexibility in the fulcrum bending test is not governed by any single soft tissue structure acting in isolation. More detailed biomechanical characterisation of the fulcrum bending test is required to provide better data for determination of patient-specific soft tissue properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of patient-specific computer models as a pre-operative planning tool permits predictions of the likely deformity correction and allows a more detailed investigation of the biomechanical influence of different surgical procedures on the scoliotic spinal anatomy. In this paper, patient-specific computer models are used of adolescent idiopathic scoliosis patients who underwent a single rod anterior procedure at the Mater Children’s Hospital in Brisbane, to predict deformity correction and to investigate the change in biomechanics of the scoliotic spine due to surgical compressive forces applied during implant placement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"This first Australia and New Zealand edition of the comprehensive Estes’ Health Assessment and Physical Examination is designed to teach students to assess a patient’s physical, psychological, cultural and emotional dimensions of health as a foundation of nursing care. The skills of interviewing, inspection, percussion, palpation, auscultation, and documentation are defined to help students to make clinical assessments and promote healthy patient outcomes. A strong emphasis on science encompasses all the technical aspects of anatomy, physiology and assessment, while highlighting clinically relevant information. Emphasis on caring is displayed through themes of assessment of the whole person, which also encourages nurses to think about care for themselves as well as patients."--publisher website