638 resultados para Analytical models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, some models have been proposed for the fault section estimation and state identification of unobserved protective relays (FSE-SIUPR) under the condition of incomplete state information of protective relays. In these models, the temporal alarm information from a faulted power system is not well explored although it is very helpful in compensating the incomplete state information of protective relays, quickly achieving definite fault diagnosis results and evaluating the operating status of protective relays and circuit breakers in complicated fault scenarios. In order to solve this problem, an integrated optimization mathematical model for the FSE-SIUPR, which takes full advantage of the temporal characteristics of alarm messages, is developed in the framework of the well-established temporal constraint network. With this model, the fault evolution procedure can be explained and some states of unobserved protective relays identified. The model is then solved by means of the Tabu search (TS) and finally verified by test results of fault scenarios in a practical power system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exact solutions of partial differential equation models describing the transport and decay of single and coupled multispecies problems can provide insight into the fate and transport of solutes in saturated aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that the initial condition is restricted in the sense that the choice of initial condition has an important impact on whether or not the inverse transform can be calculated exactly. In this work we describe and implement a technique that produces exact solutions for single and multispecies reactive transport problems with more general, smooth initial conditions. We achieve this by using a different method to invert a Laplace transform which produces a power series solution. To demonstrate the utility of this technique, we apply it to two example problems with initial conditions that cannot be solved exactly using traditional transform techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autonomous navigation and picture compilation tasks require robust feature descriptions or models. Given the non Gaussian nature of sensor observations, it will be shown that Gaussian mixture models provide a general probabilistic representation allowing analytical solutions to the update and prediction operations in the general Bayesian filtering problem. Each operation in the Bayesian filter for Gaussian mixture models multiplicatively increases the number of parameters in the representation leading to the need for a re-parameterisation step. A computationally efficient re-parameterisation step will be demonstrated resulting in a compact and accurate estimate of the true distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in studying coupled groundwater and surface-water interactions arises from the considerable difference in the response time scales of groundwater and surface-water systems affected by external forcings. Although coupled models representing the interaction of groundwater and surface-water systems have been studied for over a century, most have focused on groundwater quantity or quality issues rather than response time. In this study, we present an analytical framework, based on the concept of mean action time (MAT), to estimate the time scale required for groundwater systems to respond to changes in surface-water conditions. MAT can be used to estimate the transient response time scale by analyzing the governing mathematical model. This framework does not require any form of transient solution (either numerical or analytical) to the governing equation, yet it provides a closed form mathematical relationship for the response time as a function of the aquifer geometry, boundary conditions, and flow parameters. Our analysis indicates that aquifer systems have three fundamental time scales: (i) a time scale that depends on the intrinsic properties of the aquifer; (ii) a time scale that depends on the intrinsic properties of the boundary condition, and; (iii) a time scale that depends on the properties of the entire system. We discuss two practical scenarios where MAT estimates provide useful insights and we test the MAT predictions using new laboratory-scale experimental data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Risk factor analyses for nosocomial infections (NIs) are complex. First, due to competing events for NI, the association between risk factors of NI as measured using hazard rates may not coincide with the association using cumulative probability (risk). Second, patients from the same intensive care unit (ICU) who share the same environmental exposure are likely to be more similar with regard to risk factors predisposing to a NI than patients from different ICUs. We aimed to develop an analytical approach to account for both features and to use it to evaluate associations between patient- and ICU-level characteristics with both rates of NI and competing risks and with the cumulative probability of infection. Methods We considered a multicenter database of 159 intensive care units containing 109,216 admissions (813,739 admission-days) from the Spanish HELICS-ENVIN ICU network. We analyzed the data using two models: an etiologic model (rate based) and a predictive model (risk based). In both models, random effects (shared frailties) were introduced to assess heterogeneity. Death and discharge without NI are treated as competing events for NI. Results There was a large heterogeneity across ICUs in NI hazard rates, which remained after accounting for multilevel risk factors, meaning that there are remaining unobserved ICU-specific factors that influence NI occurrence. Heterogeneity across ICUs in terms of cumulative probability of NI was even more pronounced. Several risk factors had markedly different associations in the rate-based and risk-based models. For some, the associations differed in magnitude. For example, high Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were associated with modest increases in the rate of nosocomial bacteremia, but large increases in the risk. Others differed in sign, for example respiratory vs cardiovascular diagnostic categories were associated with a reduced rate of nosocomial bacteremia, but an increased risk. Conclusions A combination of competing risks and multilevel models is required to understand direct and indirect risk factors for NI and distinguish patient-level from ICU-level factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Greenhouse gas (GHG) emissions are simultaneously exhausting the world's supply of fossil fuels and threatening the global climate. In many developing countries, significant improvement in living standards in recent years due to the accelerating development of their economies has resulted in a disproportionate increase in household energy consumption. Therefore, a major reduction in household carbon emissions (HCEs) is essential if global carbon reduction targets are to be met. To do this, major Organisation for Economic Co-operation and Development (OECD) states have already implemented policies to alleviate the negative environmental effects of household behaviors and less carbon-intensive technologies are also proposed to promote energy efficiency and reduce carbon emissions. However, before any further remedial actions can be contemplated, though, it is important to fully understand the actual causes of such large HCEs and help researchers both gain deep insights into the development of the research domain and identify valuable research topics for future study. This paper reviews existing literature focusing on the domain of HCEs. This critical review provides a systematic understanding of current work in the field, describing the factors influencing HCEs under the themes of household income, household size, age, education level, location, gender and rebound effects. The main quantification methodologies of input–output models, life cycle assessment and emission coefficient methods are also presented, and the proposed measures to mitigate HCEs at the policy, technology and consumer levels. Finally, the limitations of work done to date and further research directions are identified for the benefit of future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the third-moment structure of a class of time series models. It is often argued that the marginal distribution of financial time series such as returns is skewed. Therefore it is of importance to know what properties a model should possess if it is to accommodate unconditional skewness. We consider modeling the unconditional mean and variance using models that respond nonlinearly or asymmetrically to shocks. We investigate the implications of these models on the third-moment structure of the marginal distribution as well as conditions under which the unconditional distribution exhibits skewness and nonzero third-order autocovariance structure. In this respect, an asymmetric or nonlinear specification of the conditional mean is found to be of greater importance than the properties of the conditional variance. Several examples are discussed and, whenever possible, explicit analytical expressions provided for all third-order moments and cross-moments. Finally, we introduce a new tool, the shock impact curve, for investigating the impact of shocks on the conditional mean squared error of return series.