33 resultados para Alpha actine musculaire lisse
Resumo:
Saliva is a crucial biofluid for oral health and is also of increasing importance as a non-invasive source of disease biomarkers. Salivary alpha-amylase is an abundant protein in saliva, and changes in amylase expression have been previously associated with a variety of diseases and conditions. Salivary alpha-amylase is subject to a high diversity of post-translational modifications, including physiological proteolysis in the oral cavity. Here we developed methodology for rapid sample preparation and non-targeted LC-ESI-MS/MS analysis of saliva from healthy subjects and observed an extreme diversity of alpha-amylase proteolytic isoforms. Our results emphasize the importance of consideration of post-translational events such as proteolysis in proteomic studies, biomarker discovery and validation, particularly in saliva. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.
Resumo:
Uropathogenic Escherichia coli is the primary cause of urinary tract infections, which affects over 60% of women during their lifetime. UPEC exhibits a number of virulence traits that facilitate colonization of the bladder, including inhibition of cytokine production by bladder epithelial cells. The goal of this study was to identify the mechanism of this inhibition. We observed that cytokine suppression was associated with rapid cytotoxicity toward epithelial cells. We found that cytotoxicity, cytokine suppression and alpha-hemolysin production were all tightly linked in clinical isolates. We screened a UPEC fosmid library and identified clones that gained the cytotoxicity and cytokine-suppression phenotypes. Both clones contained fosmids encoding a PAI II(J96)-like domain and expressed the alpha-hemolysin (hlyA) encoded therein. Mutation of the fosmid-encoded hly operon abolished cytotoxicity and cytokine suppression. Similarly, mutation of the chromosomal hlyCABD operon of UPEC isolate F11 also abolished these phenotypes, and they could be restored by introducing the PAI II(J96)-like domain-encoding fosmid. We also examined the role of alpha-hemolysin in cytokine production both in the murine UTI model as well as patient specimens. We conclude that E. coli utilizes alpha-hemolysin to inhibit epithelial cytokine production in vitro. Its contribution to inflammation during infection requires further study.