72 resultados para Agricultural pests.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different international plant protection organisations advocate different schemes for conducting pest risk assessments. Most of these schemes use structured questionnaire in which experts are asked to score several items using an ordinal scale. The scores are then combined using a range of procedures, such as simple arithmetic mean, weighted averages, multiplication of scores, and cumulative sums. The most useful schemes will correctly identify harmful pests and identify ones that are not. As the quality of a pest risk assessment can depend on the characteristics of the scoring system used by the risk assessors (i.e., on the number of points of the scale and on the method used for combining the component scores), it is important to assess and compare the performance of different scoring systems. In this article, we proposed a new method for assessing scoring systems. Its principle is to simulate virtual data using a stochastic model and, then, to estimate sensitivity and specificity values from these data for different scoring systems. The interest of our approach was illustrated in a case study where several scoring systems were compared. Data for this analysis were generated using a probabilistic model describing the pest introduction process. The generated data were then used to simulate the outcome of scoring systems and to assess the accuracy of the decisions about positive and negative introduction. The results showed that ordinal scales with at most 5 or 6 points were sufficient and that the multiplication-based scoring systems performed better than their sum-based counterparts. The proposed method could be used in the future to assess a great diversity of scoring systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change. Keywords: Nutrient use efficiency; Cumulative exergy use efficiency; Thermodynamic efficiency change; Productivity growth; OECD agriculture; Sustainability

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Policies that encourage greenhouse-gas emitters to mitigate emissions through terrestrial carbon (C) offsets – C sequestration in soils or biomass – will promote practices that reduce erosion and build soil fertility, while fostering adaptation to climate change, agricultural development, and rehabilitation of degraded soils. However none of these benefits will be possible until changes in C stocks can be documented accurately and cost-effectively. This is particularly challenging when dealing with changes in soil organic C (SOC) stocks. Precise methods for measuring C in soil samples are well established, but spatial variability in the factors that determine SOC stocks makes it difficult to document change. Widespread interest in the benefits of SOC sequestration has brought this issue to the fore in the development of US and international climate policy. Here, we review the challenges to documenting changes in SOC stocks, how policy decisions influence offset documentation requirements, and the benefits and drawbacks of different sampling strategies and extrapolation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern technology now has the ability to generate large datasets over space and time. Such data typically exhibit high autocorrelations over all dimensions. The field trial data motivating the methods of this paper were collected to examine the behaviour of traditional cropping and to determine a cropping system which could maximise water use for grain production while minimising leakage below the crop root zone. They consist of moisture measurements made at 15 depths across 3 rows and 18 columns, in the lattice framework of an agricultural field. Bayesian conditional autoregressive (CAR) models are used to account for local site correlations. Conditional autoregressive models have not been widely used in analyses of agricultural data. This paper serves to illustrate the usefulness of these models in this field, along with the ease of implementation in WinBUGS, a freely available software package. The innovation is the fitting of separate conditional autoregressive models for each depth layer, the ‘layered CAR model’, while simultaneously estimating depth profile functions for each site treatment. Modelling interest also lay in how best to model the treatment effect depth profiles, and in the choice of neighbourhood structure for the spatial autocorrelation model. The favoured model fitted the treatment effects as splines over depth, and treated depth, the basis for the regression model, as measured with error, while fitting CAR neighbourhood models by depth layer. It is hierarchical, with separate onditional autoregressive spatial variance components at each depth, and the fixed terms which involve an errors-in-measurement model treat depth errors as interval-censored measurement error. The Bayesian framework permits transparent specification and easy comparison of the various complex models compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Waitrose has a strong commitment to organic farming but also uses products from 'conventional' farms. At the production stage, Waitrose own-label products are fully traceable, GM-free and all suppliers undergo a detailed assessment programme based on current best practice. Crop suppliers to Waitrose operate an authenticity programme to certify that each assignment is GM-free and produce is screened for pesticide residues. Waitrose sources conventional crops grown from 'Integrated Crop Management Systems' (ICMS) using best horticultural practices. The 'Assured Product' scheme regulates all UK produce to ICMS standards and these audits are being extended worldwide. Business is withdrawn from suppliers who fail the audit. In relation to this, Waitrose has increased its Fairtrade range as in its view 'Buying these products provides direct additional benefit to workers in the developing countries where they are produced and assists marginal producers by giving them access to markets they would not otherwise have'. Currently, Waitrose is developing its own sustainable timber assessment criteria. For livestock, protocols are in place to ensure that animals are reared under the 'most natural conditions possible' and free range produce is offered where animals have access to open space although some produce is not from free-range animals. Waitrose also use a 'Hazards Analysis Critical Points' system to identify food safety hazards that occur at any stage from production to point of sale and to ensure that full measures are in place to control them. In addition, mechanisms have been implemented to reduce fuel use and hence reduce CO2 emissions in the transport of products and staff, and to increase the energy use efficiency of refrigeration systems which account for approximately 60% of Waitrose energy use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective, statistically robust sampling and surveillance strategies form an integral component of large agricultural industries such as the grains industry. Intensive in-storage sampling is essential for pest detection, Integrated Pest Management (IPM), to determine grain quality and to satisfy importing nation’s biosecurity concerns, while surveillance over broad geographic regions ensures that biosecurity risks can be excluded, monitored, eradicated or contained within an area. In the grains industry, a number of qualitative and quantitative methodologies for surveillance and in-storage sampling have been considered. Primarily, research has focussed on developing statistical methodologies for in storage sampling strategies concentrating on detection of pest insects within a grain bulk, however, the need for effective and statistically defensible surveillance strategies has also been recognised. Interestingly, although surveillance and in storage sampling have typically been considered independently, many techniques and concepts are common between the two fields of research. This review aims to consider the development of statistically based in storage sampling and surveillance strategies and to identify methods that may be useful for both surveillance and in storage sampling. We discuss the utility of new quantitative and qualitative approaches, such as Bayesian statistics, fault trees and more traditional probabilistic methods and show how these methods may be used in both surveillance and in storage sampling systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivory is generally regarded as negatively impacting on host plant fitness. Frugivorous insects, which feed directly on plant reproductive tissues, are predicted to be particularly damaging to hosts. We tested this prediction with the fruit fly, Bactrocera tryoni, by recording the impact of larval feeding on two direct (seed number and germination) and two indirect (fruit decay rate and attraction/deterrence of vertebrate frugivores) measures of host plant fitness. Experiments were done in the laboratory, glasshouse and tropical rainforest. We found no negative impact of larval feeding on seed number or germination for three test plants: tomato, capsicum and eggplant. Further, larval feeding accelerated the initiation of decay and increased the final level of fruit decay in tomatoes, apples, pawpaw and pear, a result considered to be beneficial to the fruit. In rainforest studies, native rodents preferred infested apple and pears compared to uninfested control fruit; however, there were no differences observed between treatments for tomato and pawpaw. For our study fruits, these results demonstrate that fruit fly larval infestation has neutral or beneficial impacts on the host plant, an outcome which may be largely influenced by the physical properties of the host. These results may contribute to explaining why fruit flies have not evolved the same level of host specialization generally observed for other herbivore groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen. © 2008 SGM.