340 resultados para Aggregates (Building materials)
Resumo:
The fire performance of cold-formed steel members is an important criterion to be verified for their successful use in structural applications. However, lack of clear design guidance on their fire performance has inhibited their usage in buildings. Their elevated temperature mechanical properties, i.e., yield strengths, elastic moduli and stress–strain relationships, are imperative for the fire design. In the past many researchers have proposed elevated temperature mechanical property reduction factors for cold-formed steels, however, large variations exist among them. The LiteSteel Beam (LSB), a hollow flange channel section, is manufactured by a combined cold-forming and electric resistance welding process. Its web, inner and outer flange elements have different yield strengths due to varying levels of cold-working caused by their manufacturing process. Elevated temperature mechanical properties of LSBs are not the same even within their cross-sections. Therefore an experimental study was undertaken to determine the elevated temperature mechanical properties of steel plate elements in LSBs. Elevated temperature tensile tests were performed on web, inner and outer flange specimens taken from LSBs, and their results are presented in this paper including their comparisons with previous studies. Based on the test results and the proposed values from previous studies and fire design standards, suitable predictive equations are proposed for the determination of elevated temperature mechanical properties of LSB web and flange elements. Suitable stress–strain models are also proposed for the plate elements of this cold-formed and welded hollow flange channel section.
Resumo:
Masonry under compression is affected by the properties of its constituents and their interfaces. In spite of extensive investigations of the behaviour of masonry under compression, the information in the literature cannot be regarded as comprehensive due to ongoing inventions of new generation products – for example, polymer modified thin layer mortared masonry and drystack masonry. As comprehensive experimental studies are very expensive, an analytical model inspired by damage mechanics is developed and applied to the prediction of the compressive behaviour of masonry in this paper. The model incorporates a parabolic progressively softening stress-strain curve for the units and a progressively stiffening stress-strain curve until a threshold strain for the combined mortar and the unit-mortar interfaces is reached. The model simulates the mutual constraints imposed by each of these constituents through their respective tensile and compressive behaviour and volumetric changes. The advantage of the model is that it requires only the properties of the constituents and considers masonry as a continuum and computes the average properties of the composite masonry prisms/wallettes; it does not require discretisation of prism or wallette similar to the finite element methods. The capability of the model in capturing the phenomenological behaviour of masonry with appropriate elastic response, stiffness degradation and post peak softening is presented through numerical examples. The fitting of the experimental data to the model parameters is demonstrated through calibration of some selected test data on units and mortar from the literature; the calibrated model is shown to predict the responses of the experimentally determined masonry built using the corresponding units and mortar quite well. Through a series of sensitivity studies, the model is also shown to predict the masonry strength appropriately for changes to the properties of the units and mortar, the mortar joint thickness and the ratio of the height of unit to mortar joint thickness. The unit strength is shown to affect the masonry strength significantly. Although the mortar strength has only a marginal effect, reduction in mortar joint thickness is shown to have a profound effect on the masonry strength. The results obtained from the model are compared with the various provisions in the Australian Masonry Structures Standard AS3700 (2011) and Eurocode 6.
Resumo:
This research was a step forward in investigating the characteristics of recycled concrete aggregates to use as an unbound pavement material. The results present the guidelines for successfully application of recycled concrete aggregates in high traffic volume roads. Outcomes of the research create more economical and environmental benefits through reducing the depletion of natural resources and effectively manage the generated concrete waste before disposal as land fill.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
In recent years considerable effort has gone into quantifying the reuse and recycling potential of waste generated by residential construction. Unfortunately less information is available for the commercial refurbishment sector. It is hypothesised that significant economic and environmental benefit can be derived from closer monitoring of the commercial construction waste stream. With the aim of assessing these benefits, the authors are involved in ongoing case studies to record both current standard practice and the most effective means of improving the eco-efficiency of materials use in office building refurbishments. This paper focuses on the issues involved in developing methods for obtaining the necessary information on better waste management practices and establishing benchmark indicators. The need to create databases to establish benchmarks of waste minimisation best practice in commercial construction is stressed. Further research will monitor the delivery of case study projects and the levels of reuse and recycling achieved in directly quantifiable ways
Resumo:
Since the industrial revolution, our world has experienced rapid and unplanned industrialization and urbanization. As a result, we have had to cope with serious environmental challenges. In this context, an explanation of how smart urban ecosystems can emerge, gains a crucial importance. Capacity building and community involvement have always been key issues in achieving sustainable development and enhancing urban ecosystems. By considering these, this paper looks at new approaches to increase public awareness of environmental decision making. This paper will discuss the role of Information and Communication Technologies (ICT), particularly Webbased Geographic Information Systems (Web-based GIS) as spatial decision support systems to aid public participatory environmental decision making. The paper also explores the potential and constraints of these webbased tools for collaborative decision making.
Resumo:
The unusual behaviour of fine lunar regolith like stickiness and low heat conductivity is dominated by the structural arrangement of its finest fraction in the outer-most topsoil layer. Here, we show the previously unknown phenomenon of building a globular 3-D superstructure within the dust fraction of the regolith. New technology, Transmission X-ray Microscopy (TXM) with tomographic reconstruction, reveals a highly porous network of cellular void system in the lunar finest dust fraction aggregates. Such porous chained aggregates are composed of sub-micron in size particles that build cellular void networks. Voids are a few micrometers in diameter. Discovery of such a superstructure within the finest fraction of the lunar topsoil allow building a model of heat transfer which is discussed.
Resumo:
This report examines the involvement of manufacturers in value-adding through service-enhancement of product offerings. This focus has been prompted by: emphasis in the knowledge-economy literature on the increasing role played by services in economic growth; and recent analysis which suggests that the most dynamic sector of many economies is an integrated manufacturing-services sector (see Part One of this report). The report initially describes the emergence of an integrated manufacturing-services sector in the context of increasingly knowledge-based economic systems. Part Two reports on the results of a survey of manufacturers in the building and construction product system, investigating their involvement in service provision. Parts Three and Four present two case studies of exemplary manufacturers involved in adding value to their manufacturing operations through services offered on building and construction projects. The report examines manufacturers of materials, products, equipment and machinery used on building and construction projects. The two case study sections of the report, in part, focus on a major project undertaken by each of the manufacturers. This project element of activity is focussed on (as opposed to wholesale or retail supply), because this area of activity involves a broader array of service-enhancement mechanisms and more complex bundling of products and services.
Resumo:
This project involved the complete refurbishment and extension of a 1980’s two-storey domestic brick building, previously used as a Boarding House (Class 3), into Middle School facilities (Class 9b) on a heritage listed site at Nudgee College secondary school, Brisbane. The building now accommodates 12 technologically advanced classrooms, computer lab and learning support rooms, tuckshop, art room, mini library/reading/stage area, dedicated work areas for science and large projects with access to water on both floors, staff facilities and an undercover play area suitable for assemblies and presentations. The project was based on a Reggio Emilia approach, in which the organisation of the physical environment is referred to as the child’s third teacher, creating opportunities for complex, varied, sustained and changing relationships between people and ideas. Classrooms open to a communal centre piazza and are integrated with the rest of the school and the school with the surrounding community. In order to achieve this linkage of the building with the overall masterplan of the site, a key strategy of the internal planning was to orientate teaching areas around a well defined active circulation space that breaks out of the building form to legibly define the new access points to the building and connect up to the pathway network of the campus. The width of the building allowed for classrooms and a generous corridor that has become ‘breakout’ teaching areas for art, IT, and small group activities. Large sliding glass walls allow teachers to maintain supervision of students across all areas and allow maximum light penetration through small domestic window openings into the deep and low-height spaces. The building was also designed with an effort to uphold cultural characteristics from the Edmund Rice Education Charter (2004). Coherent planning is accompanied by a quality fit-out, creating a vibrant and memorable environment in which to deliver the upper primary curriculum. Consistent with the Reggio Emilia approach, materials, expressive of the school’s colours, are used in a contemporary, adventurous manner to create panels of colour useful for massing and defining the ‘breakout’ teaching areas and paths of travel, and storage elements are detailed and arranged to draw attention to their aesthetic features. Modifications were difficult due to the random placement of load bearing walls, minimum ceiling heights, the general standard of finishes and new fire and energy requirements, however the reuse of this building was assessed to be up to 30% cheaper than an equivalent new building, The fit out integrates information technology and services at a level not usually found in primary school facilities. This has been achieved within the existing building fabric through thoughtful detailing and co-ordination with allied disciplines.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Conventionally the fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834 (ISO, 1999). The standard time-temperature curve given in ISO 834 (ISO, 1999) originated from the application of wood burning furnaces in the early 1900s. However, modern commercial and residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of LSF walls was undertaken using the developed real fire curves based on Eurocode parametric curves (ECS, 2002) and Barnett’s BFD curves (Barnett, 2002) using both full scale fire tests and numerical studies. It included LSF walls without any insulation, and the recently developed externally insulated composite panel system. This paper presents the details of the numerical studies and the results. It also includes brief details of the development of real building fire curves and experimental studies.
Resumo:
Chondritic porous aggregates (CPA's) belong to an important subset of small particles (usually between 5 and 50 micrometers) collected from the stratosphere by high flying aircraft. These aggregates are approximately chondritic in elemental abundance and are composed of many thousands of smaller, submicrometer particles. CPA particles have been the subject of intensive study during the past few years [1-3] and there is strong evidence that they are a new class of extraterrestrial material not represented in the meteorite collection [3,4]. However, CPA's may be related to carbonaceous chondrites and in fact, both may be part of a continuum of primitive extraterrestrial materials [5]. The importance of CPA's stems from suggestions that they are very primitive solar system material possibly derived from early formed proto planets, chondritic parent bodies, or comets [3, 6]. To better understand the origin and evolution of these particles, we have attempted to summarize all of the mineralogical data on identified CPA's published since about 1976.
Resumo:
The presence of carbon in primitive extraterrestrial materials has long been considered a useful indicator of prevailing geochemical conditions early in the formation of the Solar System. A recent addition to the suite of primitive materials available for study by cosmochemists includes particles collected from the stratosphere called chondritic porous (CP) aggregates1. Carbon-rich CP aggregates are less abundant in stratospheric collections and contain many low-temperature phases (such as layer silicates) as minor components2,3. We describe here the nature of the most abundant carbon phase in a carbon-rich CP aggregate (sample no. W7029* A) collected from the stratosphere as part of the Johnson Space Center (JSC) Cosmic Dust Program4. By comparison with experimental and terrestrial studies of poorly graphitized carbon (PGC), we show that the graphitization temperature, or the degree of ordering in the PGC, may provide a useful cosmothermometer for primitive extraterrestrial materials.
Resumo:
Building distributed leadership for effective supervision of creative practice higher research degrees is an Office for Learning and Teaching (OLT) funded project, conducted in partnership between Queensland University of Technology, The University of Melbourne, Auckland University of Technology, University of New South Wales and University of Western Sydney.
The project was initiated to develop a cooperative approach to establishing an understanding of the contextual frameworks of the emergent field of creative practice higher degrees by research (HDRs); capturing early insights of administrators and supervisors; gathering exemplars of good practices; and establishing an in-common understanding of effective approaches to supervision.
To this end, the project has produced:
• A literature review, to provide a research foundation for creative practice higher research degree supervision (Chapter 3).
• A contextual review of disciplinary frameworks for HDR programs, produced through surveys of postgraduate research administrators (Section 4.1), and an analysis of institutional materials and academic development programs for supervisors (Section 4.2).
• A National Symposium, Effective Supervision of Creative Arts Research Degrees (ESCARD), at QUT in Brisbane in February 2013, with 62 delegates from 20 Australasian Universities, at which project findings were disseminated, and delegates presented case studies and position papers, and participated in discussions on key issues for supervisors (Appendix 1).
• Resources, including a booklet for supervisors: 12 Principles for the Effective Supervision of Creative Practice Higher Research Degrees, which encapsulates attitudes, insights and good practices of experienced and new supervisors. It was produced through a content analysis of interviews with twenty-five supervisors in creative disciplines (visual and performing arts, music, new media, creative writing and design) (Printed booklet, PDF, Appendix 3).
• A project website to disseminate project outcomes
Resumo:
Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nano-length scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 – 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.
Resumo:
Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.