164 resultados para Aggregate ichthyofauna
Resumo:
This paper considers the implications of the permanent/transitory decomposition of shocks for identification of structural models in the general case where the model might contain more than one permanent structural shock. It provides a simple and intuitive generalization of the influential work of Blanchard and Quah [1989. The dynamic effects of aggregate demand and supply disturbances. The American Economic Review 79, 655–673], and shows that structural equations with known permanent shocks cannot contain error correction terms, thereby freeing up the latter to be used as instruments in estimating their parameters. The approach is illustrated by a re-examination of the identification schemes used by Wickens and Motto [2001. Estimating shocks and impulse response functions. Journal of Applied Econometrics 16, 371–387], Shapiro and Watson [1988. Sources of business cycle fluctuations. NBER Macroeconomics Annual 3, 111–148], King et al. [1991. Stochastic trends and economic fluctuations. American Economic Review 81, 819–840], Gali [1992. How well does the ISLM model fit postwar US data? Quarterly Journal of Economics 107, 709–735; 1999. Technology, employment, and the business cycle: Do technology shocks explain aggregate fluctuations? American Economic Review 89, 249–271] and Fisher [2006. The dynamic effects of neutral and investment-specific technology shocks. Journal of Political Economy 114, 413–451].
Resumo:
Australian Constitutional referendums have been part of the Australian political system since federation. Up to the year 1999 (the time of the last referendum in Australia), constitutional change in Australia does not have a good history of acceptance. Since 1901, there have been 44 proposed constitutional changes with eight gaining the required acceptance according to section 128 of the Australian Constitution. In the modern era since 1967, there have been 20 proposals over seven referendum votes for a total of four changes. Over this same period, there have been 13 federal general elections which have realised change in government just five times. This research examines the electoral behaviour of Australian voters from 1967 to 1999 for each referendum. Party identification has long been a key indicator in general election voting. This research considers whether the dominant theory of voter behaviour in general elections (the Michigan Model) provides a plausible explanation for voting in Australian referendums. In order to explain electoral behaviour in each referendum, this research has utilised available data from the Australian Electoral Commission, the 1996 Australian Bureau of Statistics Census data, and the 1999 Australian Constitutional Referendum Study. This data has provided the necessary variables required to measure the impact of the Michigan Model of voter behaviour. Measurements have been conducted using bivariate and multivariate analyses. Each referendum provides an overview of the events at the time of the referendum as well as the =yes‘ and =no‘ cases at the time each referendum was initiated. Results from this research provide support for the Michigan Model of voter behaviour in Australian referendum voting. This research concludes that party identification, as a key variable of the Michigan Model, shows that voters continue to take their cues for voting from the political party they identify with in Australian referendums. However, the outcome of Australian referendums clearly shows that partisanship is only one of a number of contributory factors in constitutional referendums.
Resumo:
The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3-D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, Transmission X-ray Microscopy (TXM), which makes it possible to investigate the internal structure and 3-D tomographic reconstruction of the smectite clay aggregates modified by Al13 keggin macro-molecule [Al13(O)4(OH)24(H2O)12 ]7+. Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation.
Resumo:
Most online assessment systems now incorporate social networking features, and recent developments in social media spaces include protocols that allow the synchronisation and aggregation of data across multiple user profiles. In light of these advances and the concomitant fear of data sharing in secondary school education this papers provides important research findings about generic features of online social networking, which educators can use to make sound and efficient assessments in collaboration with their students and colleagues. This paper reports on a design experiment in flexible educational settings that challenges the dichotomous legacy of success and failure evident in many assessment activities for at-risk youth. Combining social networking practices with the sociology of education the paper proposes that assessment activities are best understood as a negotiable field of exchange. In this design experiment students, peers and educators engage in explicit, "front-end" assessment (Wyatt-Smith, 2008) to translate digital artefacts into institutional, and potentiality economic capital without continually referring to paper based pre-set criteria. This approach invites students and educators to use social networking functions to assess “work in progress” and final submissions in collaboration, and in doing so assessors refine their evaluative expertise and negotiate the value of student’s work from which new criteria can emerge. The mobile advantages of web-based technologies aggregate, externalise and democratise this transparent assessment model for most, if not all, student work that can be digitally represented.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. Measurements of such forces are important to understand in order to manipulate the aggregate structure for applications such as dewatering of mineral processing tailings. A parallel particle orientation is required when conducting XRD investigation on the oriented samples and conduct force measurements acting between basal planes of clay mineral platelets using at. force microscopy (AFM). To investigate how smectite clay platelets were oriented on silicon wafer substrate when dried from suspension range of methods like SEM, XRD and AFM were employed. From these investigations, we conclude that high clay concns. and larger particle diams. (up to 5 μm) in suspension result in random orientation of platelets in the substrate. The best possible laminar orientation in the clay dry film, represented in the XRD 0 0 1/0 2 0 intensity ratio of 47 was obtained by drying thin layers from 0.02 wt.% clay suspensions of the natural pH. Conducted AFM investigations show that smectite studied in water based electrolytes show very long-range repulsive forces lower in strength than electrostatic forces from double-layer repulsion. It was suggested that these forces may have structural nature. Smectite surface layers rehydrate in water environment forms surface gel with spongy and cellular texture which cushion approaching AFM probe. This structural effect can be measured in distances larger than 1000 nm from substrate surface and when probe penetrate this gel layer, structural linkages are forming between substrate and clay covered probe. These linkages prevent subsequently smooth detachments of AFM probe on way back when retrieval. This effect of tearing new formed structure apart involves larger adhesion-like forces measured in retrieval. It is also suggested that these effect may be enhanced by the nano-clay particles interaction.
Resumo:
Principal Topic: Entrepreneurship is key to employment, innovation and growth (Acs & Mueller, 2008), and as such, has been the subject of tremendous research in both the economic and management literatures since Solow (1957), Schumpeter (1934, 1943), and Penrose (1959). The presence of entrepreneurs in the economy is a key factor in the success or failure of countries to grow (Audretsch and Thurik, 2001; Dejardin, 2001). Further studies focus on the conditions of existence of entrepreneurship, influential factors invoked are historical, cultural, social, institutional, or purely economic (North, 1997; Thurik 1996 & 1999). Of particular interest, beyond the reasons behind the existence of entrepreneurship, are entrepreneurial survival and good ''performance'' factors. Using cross-country firm data analysis, La Porta & Schleifer (2008) confirm that informal micro-businesses provide on average half of all economic activity in developing countries. They find that these are utterly unproductive compared to formal firms, and conclude that the informal sector serves as a social security net ''keep[ing] millions of people alive, but disappearing over time'' (abstract). Robison (1986), Hill (1996, 1997) posit that the Indonesian government under Suharto always pointed to the lack of indigenous entrepreneurship , thereby motivating the nationalisation of all industries. Furthermore, the same literature also points to the fact that small businesses were mostly left out of development programmes because they were supposed less productive and having less productivity potential than larger ones. Vial (2008) challenges this view and shows that small firms represent about 70% of firms, 12% of total output, but contribute to 25% of total factor productivity growth on average over the period 1975-94 in the industrial sector (Table 10, p.316). ---------- Methodology/Key Propositions: A review of the empirical literature points at several under-researched questions. Firstly, we assess whether there is, evidence of small family-business entrepreneurship in Indonesia. Secondly, we examine and present the characteristics of these enterprises, along with the size of the sector, and its dynamics. Thirdly, we study whether these enterprises underperform compared to the larger scale industrial sector, as it is suggested in the literature. We reconsider performance measurements for micro-family owned businesses. We suggest that, beside productivity measures, performance could be appraised by both the survival probability of the firm, and by the amount of household assets formation. We compare micro-family-owned and larger industrial firms' survival probabilities after the 1997 crisis, their capital productivity, then compare household assets of families involved in business with those who do not. Finally, we examine human and social capital as moderators of enterprises' performance. In particular, we assess whether a higher level of education and community participation have an effect on the likelihood of running a family business, and whether it has an impact on households' assets level. We use the IFLS database compiled and published by RAND Corporation. The data is a rich community, households, and individuals panel dataset in four waves: 1993, 1997, 2000, 2007. We now focus on the waves 1997 and 2000 in order to investigate entrepreneurship behaviours in turbulent times, i.e. the 1997 Asian crisis. We use aggregate individual data, and focus on households data in order to study micro-family-owned businesses. IFLS data covers roughly 7,600 households in 1997 and over 10,000 households in 2000, with about 95% of 1997 households re-interviewed in 2000. Households were interviewed in 13 of the 27 provinces as defined before 2001. Those 13 provinces were targeted because accounting for 83% of the population. A full description of the data is provided in Frankenberg and Thomas (2000), and Strauss et alii (2004). We deflate all monetary values in Rupiah with the World Development Indicators Consumer Price Index base 100 in 2000. ---------- Results and Implications: We find that in Indonesia, entrepreneurship is widespread and two thirds of households hold one or several family businesses. In rural areas, in 2000, 75% of households run one or several businesses. The proportion of households holding both a farm and a non farm business is higher in rural areas, underlining the reliance of rural households on self-employment, especially after the crisis. Those businesses come in various sizes from very small to larger ones. The median business production value represents less than the annual national minimum wage. Figures show that at least 75% of farm businesses produce less than the annual minimum wage, with non farm businesses being more numerous to produce the minimum wage. However, this is only one part of the story, as production is not the only ''output'' or effect of the business. We show that the survival rate of those businesses ranks between 70 and 82% after the 1997 crisis, which contrasts with the 67% survival rate for the formal industrial sector (Ter Wengel & Rodriguez, 2006). Micro Family Owned Businesses might be relatively small in terms of production, they also provide stability in times of crisis. For those businesses that provide business assets figures, we show that capital productivity is fairly high, with rates that are ten times higher for non farm businesses. Results show that households running a business have larger family assets, and households are better off in urban areas. We run a panel logit model in order to test the effect of human and social capital on the existence of businesses among households. We find that non farm businesses are more likely to appear in households with higher human and social capital situated in urban areas. Farm businesses are more likely to appear in lower human capital and rural contexts, while still being supported by community participation. The estimation of our panel data model confirm that households are more likely to have higher family assets if situated in urban area, the higher the education level, the larger the assets, and running a business increase the likelihood of having larger assets. This is especially true for non farm businesses that have a clearly larger and more significant effect on assets than farm businesses. Finally, social capital in the form of community participation also has a positive effect on assets. Those results confirm the existence of a strong entrepreneurship culture among Indonesian households. Investigating survival rates also shows that those businesses are quite stable, even in the face of a violent crisis such as the 1997 one, and as a result, can provide a safety net. Finally, considering household assets - the returns of business to the household, rather than profit or productivity - the returns of business to itself, shows that households running a business are better off. While we demonstrate that uman and social capital are key to business existence, survival and performance, those results open avenues for further research regarding the factors that could hamper growth of those businesses in terms of output and employment.
Resumo:
Economics education research studies conducted in the UK, USA and Australia to investigate the effects of learning inputs on academic performance have been dominated by the input-output model (Shanahan and Meyer, 2001). In the Student Experience of Learning framework, however, the link between learning inputs and outputs is mediated by students' learning approaches which in turn are influenced by their perceptions of the learning contexts (Evans, Kirby, & Fabrigar, 2003). Many learning inventories such as Biggs' Study Process Questionnaires and Entwistle and Ramsden' Approaches to Study Inventory have been designed to measure approaches to academic learning. However, there is a limitation to using generalised learning inventories in that they tend to aggregate different learning approaches utilised in different assessments. As a result, important relationships between learning approaches and learning outcomes that exist in specific assessment context(s) will be missed (Lizzio, Wilson, & Simons, 2002). This paper documents the construction of an assessment specific instrument to measure learning approaches in economics. The post-dictive validity of the instrument was evaluated by examining the association of learning approaches to students' perceived assessment demand in different assessment contexts.
Resumo:
This paper presents the results from a study of information behaviors in the context of people's everyday lives undertaken in order to develop an integrated model of information behavior (IB). 34 participants from across 6 countries maintained a daily information journal or diary – mainly through a secure web log – for two weeks, to an aggregate of 468 participant days over five months. The text-rich diary data was analyzed using a multi-method qualitative-quantitative analysis in the following order: Grounded Theory analysis with manual coding, automated concept analysis using thesaurus-based visualization, and finally a statistical analysis of the coding data. The findings indicate that people engage in several information behaviors simultaneously throughout their everyday lives (including home and work life) and that sense-making is entangled in all aspects of them. Participants engaged in many of the information behaviors in a parallel, distributed, and concurrent fashion: many information behaviors for one information problem, one information behavior across many information problems, and many information behaviors concurrently across many information problems. Findings indicate also that information avoidance – both active and passive avoidance – is a common phenomenon and that information organizing behaviors or the lack thereof caused the most problems for participants. An integrated model of information behaviors is presented based on the findings.
Resumo:
The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.
Resumo:
In Australia and many other countries worldwide, water used in the manufacture of concrete must be potable. At present, it is currently thought that concrete properties are highly influenced by the water type used and its proportion in the concrete mix, but actually there is little knowledge of the effects of different, alternative water sources used in concrete mix design. Therefore, the identification of the level and nature of contamination in available water sources and their subsequent influence on concrete properties is becoming increasingly important. Of most interest, is the recycled washout water currently used by batch plants as mixing water for concrete. Recycled washout water is the water used onsite for a variety of purposes, including washing of truck agitator bowls, wetting down of aggregate and run off. This report presents current information on the quality of concrete mixing water in terms of mandatory limits and guidelines on impurities as well as investigating the impact of recycled washout water on concrete performance. It also explores new sources of recycled water in terms of their quality and suitability for use in concrete production. The complete recycling of washout water has been considered for use in concrete mixing plants because of the great benefit in terms of reducing the cost of waste disposal cost and environmental conservation. The objective of this study was to investigate the effects of using washout water on the properties of fresh and hardened concrete. This was carried out by utilizing a 10 week sampling program from three representative sites across South East Queensland. The sample sites chosen represented a cross-section of plant recycling methods, from most effective to least effective. The washout water samples collected from each site were then analysed in accordance with Standards Association of Australia AS/NZS 5667.1 :1998. These tests revealed that, compared with tap water, the washout water was higher in alkalinity, pH, and total dissolved solids content. However, washout water with a total dissolved solids content of less than 6% could be used in the production of concrete with acceptable strength and durability. These results were then interpreted using chemometric techniques of Principal Component Analysis, SIMCA and the Multi-Criteria Decision Making methods PROMETHEE and GAIA were used to rank the samples from cleanest to unclean. It was found that even the simplest purifying processes provided water suitable for the manufacture of concrete form wash out water. These results were compared to a series of alternative water sources. The water sources included treated effluent, sea water and dam water and were subject to the same testing parameters as the reference set. Analysis of these results also found that despite having higher levels of both organic and inorganic properties, the waters complied with the parameter thresholds given in the American Standard Test Method (ASTM) C913-08. All of the alternative sources were found to be suitable sources of water for the manufacture of plain concrete.
Resumo:
The soil C saturation concept suggests a limit to whole soil organic carbon (SOC) accumulation determined by inherent physicochemical characteristics of four soil C pools: unprotected, physically protected, chemically protected, and biochemically protected. Previous attempts to quantify soil C sequestration capacity have focused primarily on silt and clay protection and largely ignored the effects of soil structural protection and biochemical protection. We assessed two contrasting models of SOC accumulation, one with no saturation limit (i.e., linear first-order model) and one with an explicit soil C saturation limit (i.e., C saturation model). We isolated soil fractions corresponding to the C pools (i.e., free particulate organic matter POM], microaggregate-associated C, silt- and clay-associated C, and non-hydrolyzable C) from eight long-term agroecosystern experiments across the United States and Canada. Due to the composite nature of the physically protected C pool, we firactioned it into mineral- vs. POM-associated C. Within each site, the number of fractions fitting the C saturation model was directly related to maximum SOC content, suggesting that a broad range in SOC content is necessary to evaluate fraction C saturation. The two sites with the greatest SOC range showed C saturation behavior in the chemically, biochemically, and some mineral-associated fractions of the physically protected pool. The unprotected pool and the aggregate-protected POM showed linear, nonsaturating behavior. Evidence of C saturation of chemically and biochemically protected SOC pools was observed at sites far from their theoretical C saturation level, while saturation of aggregate-protected fractions occurred in soils closer to their C saturation level.
Resumo:
Since land use change can have significant impacts on regional biogeochemistry, we investigated how conversion of forest and cultivation to pasture impact soil C and N cycling. In addition to examining total soil C, we isolated soil physiochemical C fractions in order to understand the mechanisms by which soil C is sequestered or lost. Total soil C did not change significantly over time following conversion from forest, though coarse (250-2,000 mum) particulate organic matter C increased by a factor of 6 immediately after conversion. Aggregate mean weight diameter was reduced by about 50% after conversion, but values were like those under forest after 8 years under pasture. Samples collected from a long-term pasture that was converted from annual cultivation more than 50 years ago revealed that some soil physical properties negatively impacted by cultivation were very slow to recover. Finally, our results indicate that soil macroaggregates turn over more rapidly under pasture than under forest and are less efficient at stabilizing soil C, whereas microaggregates from pasture soils stabilize a larger concentration of C than forest microaggregates. Since conversion from forest to pasture has a minimal impact on total soil C content in the Piedmont region of Virginia, United States, a simple C stock accounting system could use the same base soil C stock value for either type of land use. However, since the effects of forest to pasture conversion are a function of grassland management following conversion, assessments of C sequestration rates require activity data on the extent of various grassland management practices.
Resumo:
The Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE) model provides an external validation capability for hot stabilized option; the model is one of several new modal emissions models designed to predict hot stabilized emission rates for various motor vehicle groups as a function of the conditions under which the vehicles are operating. The validation of aggregate measurements, such as speed and acceleration profile, is performed on an independent data set using three statistical criteria. The MEASURE algorithms have proved to provide significant improvements in both average emission estimates and explanatory power over some earlier models for pollutants across almost every operating cycle tested.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.