38 resultados para Ag atoms
Resumo:
Titanate nanotubes (TNT) supported AgI nanoparticles were prepared by a two-step method: the deposition of Ag2O on titanate nanotubes from AgNO3 solution and the subsequent I-adsorption process from NaI solution. It is found that the supported AgI samples exhibited excellent photoactivity for the selective oxidation of benzylamine to the corresponding imine under visible light illumination and the photocatalyst can be used for many times without apparent activity loss. X-ray diffraction studies, transmission electron microscopy, diffuse reflectance UV-Vis spectroscopy and nitrogen adsorption measurements were used for the characterization of the as-prepared and recycled AgI samples. It is found that under visible light irradiation, AgI partially decomposed to produce Ag/AgI nanostructure and thus stabilized. The photoactivity of supported Ag/AgI for the selective oxidation of benzylamine was studied in terms of the light intensity, wavelength, temperature and substituent. It is proposed that the formation of plasmonic Ag nanoparticles should be responsible for the high activity and selectivity.
Resumo:
Abstract Ag-TiO2 and Au-TiO2 hybrid electrodes were designed by covalent attachment of TiO2 nanoparticles to Ag or Au electrodes via an organic linker. The optical and electronic properties of these systems were investigated using the cytochrome b5 (Cyt b5) domain of sulfite oxidase, exclusively attached to the TiO2 surface, as a Raman marker and model redox enzyme. Very strong SERR signals of Cyt b 5 were obtained for Ag-supported systems due to plasmonic field enhancement of Ag. Time-resolved surface-enhanced resonance Raman spectroscopic measurements yielded a remarkably fast electron transfer kinetic (k = 60 s -1) of Cyt b5 to Ag. A much lower Raman intensity was observed for Au-supported systems with undefined and slow redox behavior. We explain this phenomenon on the basis of the different potential of zero charge of the two metals that largely influence the electronic properties of the TiO2 island film. © 2013 American Chemical Society.
Resumo:
Silica coated Ag nanoparticles with defined surface plasmon resonances are used to selectively detect and analyze protein cofactors in solution and on interfaces via surface enhanced resonance Raman spectroscopy. The silica coating has a surprisingly small effect on optical amplification but minimizes unwanted interactions between the protein and the nanoparticle.
Resumo:
We present a preparation procedure for small sized biocompatibly coated Ag nanoparticles with tunable surface plasmon resonances. The conditions were optimised with respect to the resonance Raman signal enhancement of heme proteins and to the preservation of the native protein structure....
Resumo:
The electrochemical formation of nanostructured materials is generally achieved by reduction of a metal salt onto a substrate that does not influence the composition of the deposit. In this work we report that Ag, Au and Pd electrodeposited onto Cu under conditions where galvanic replacement is not viable and hydrogen gas is evolved results in the formation of nanostructured surfaces that unexpectedly incorporate a high concentration of Cu in the final material. Under cathodic polarization conditions the electrodissolution/corrosion of Cu occurs which provides a source of ionic copper that is reduced at the surface-electrolyte interface. The nanostructured Cu/M (M = Ag, Au and Pd) surfaces are investigated for their catalytic activity for the reduction of 4 nitrophenol by NaBH4 where Cu/Ag was found to be extremely active. This work indicates that a substrate electrode can be utilized in an interesting manner t make bimetallic nanostructures with enhanced catalytic activity.
Resumo:
High efficiency organic photovoltaic cells discussed in literature are normally restricted to devices fabricated on glass substrates. This is a consequence of the extreme brittleness and inflexibility of the commonly used transparent conductive oxide electrode, indium tin oxide (ITO). This shortcoming of ITO along with other concerns such as increasing scarcity of indium, migration of indium to organic layer, etc. makes it imperative to move away from ITO. Here we demonstrate a highly flexible Ag electrode that possesses low sheet resistances even in ultra-thin layers. It retains its conductivity under severe bending stresses where ITO fails completely. A P3HT:PCBM blend organic solar cell fabricated on this highly flexible electrode gives an efficiency of 2.3%.
Resumo:
The interaction at the interface between a metal electrode and photoactive polymer is crucial for overall performance and stability of organic photovoltaics (OPVs). In this article, we report a comparative study of the stability of thin film Ag and indium tin oxide (ITO) as electrodes when used in conjunction with an interfacial PEDOT:PSS layer for P3HT:PCBM blend OPV devices. XPS measurements were taken for Ag and ITO/PEDOT:PSS layered samples with different exposure times to ambient conditions (∼25 °C, ∼50% relative humidity) to investigate the migration of Ag and In into the PEDOT:PSS layer. The change in efficiency of OPVs with a longer exposure time and degree of migration is explained by the analysis of XPS results. We propose the mechanism behind the interactions occurring at the interfaces. The efficiency of the ITO electrode OPVs continuously decreased to below 10% of the initial efficiency. However, the Ag devices displayed a slower degradation and maintained 50% of the initial efficiency for the same period of time.