73 resultados para Acrylic adhesive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thin-sectioned samples mounted on glass slides with common petrographic epoxies cannot be easily removed (for subsequent ion-milling) by standard methods such as heating or dissolution in solvents. A method for the removal of such samples using a radio frequency (RF) generated oxygen plasma has been investigated for a number of typical petrographic and ceramic thin sections. Sample integrity and thickness were critical factors that determined the etching rate of adhesive and the survivability of the sample. Several tests were performed on a variety of materials in order to estimate possible heating or oxidation damage from the plasma. Temperatures in the plasma chamber remained below 138°C and weight changes in mineral powders etched for 76 hr were less than ±4%. A crystal of optical grade calcite showed no apparent surface damage after 48 hr of etching. Any damage from the oxygen plasma is apparently confined to the surface of the sample, and is removed during the ion-milling stage of transmission electron microscopy (TEM) sample preparation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying 11 positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The measurement of broadband ultrasonic attenuation (BUA) in cancellous bone for the assessment of osteoporosis follows a parabolic-type dependence with bone volume fraction; having minima values corresponding to both entire bone and entire marrow. Langton has recently proposed that the primary BUA mechanism may be significant phase interference due to variations in propagation transit time through the test sample as detected over the phase-sensitive surface of the receive ultrasound transducer. This fundamentally simple concept assumes that the propagation of ultrasound through a complex solid : liquid composite sample such as cancellous bone may be considered by an array of parallel ‘sonic rays’. The transit time of each ray is defined by the proportion of bone and marrow propagated, being a minimum (tmin) solely through bone and a maximum (tmax) solely through marrow. A Transit Time Spectrum (TTS), ranging from tmin to tmax, may be defined describing the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit time over the surface of the receive ultrasound transducer. Phase interference may result from interaction of ‘sonic rays’ of differing transit times. The aim of this study was to test the hypothesis that there is a dependence of phase interference upon the lateral inhomogenity of transit time by comparing experimental measurements and computer simulation predictions of ultrasound propagation through a range of relatively simplistic solid:liquid models exhibiting a range of lateral inhomogeneities. Methods: A range of test models was manufactured using acrylic and water as surrogates for bone and marrow respectively. The models varied in thickness in one dimension normal to the direction of propagation, hence exhibiting a range of transit time lateral inhomogeneities, ranging from minimal (single transit time) to maximal (wedge; ultimately the limiting case where each sonic ray has a unique transit time). For the experimental component of the study, two unfocused 1 MHz ¾” broadband diameter transducers were utilized in transmission mode; ultrasound signals were recorded for each of the models. The computer simulation was performed with Matlab, where the transit time and relative amplitude of each sonic ray was calculated. The transit time for each sonic ray was defined as the sum of transit times through acrylic and water components. The relative amplitude considered the reception area for each sonic ray along with absorption in the acrylic. To replicate phase-sensitive detection, all sonic rays were summed and the output signal plotted in comparison with the experimentally derived output signal. Results: From qualtitative and quantitative comparison of the experimental and computer simulation results, there is an extremely high degree of agreement of 94.2% to 99.0% between the two approaches, supporting the concept that propagation of an ultrasound wave, for the models considered, may be approximated by a parallel sonic ray model where the transit time of each ray is defined by the proportion of ‘bone’ and ‘marrow’. Conclusions: This combined experimental and computer simulation study has successfully demonstrated that lateral inhomogeneity of transit time has significant potential for phase interference to occur if a phase-sensitive ultrasound receive transducer is implemented as in most commercial ultrasound bone analysis devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the failure of high adhesive, low compressive strength, thin layered polymer mortar joints in masonry through a contact modelling in finite element framework. Failure due to combined shear, tensile and compressive stresses are considered through a constitutive damaging contact model that incorporates traction–separation as a function of displacement discontinuity. The modelling method is verified using single and multiple contact analyses of thin mortar layered masonry specimens under shear, tensile and compressive stresses and their combinations. Using this verified method, the failure of thin mortar layered masonry under a range of shear to tension ratios and shear to compression ratios has been examined. Finally, this model is applied to thin bed masonry wallettes for their behaviour under biaxial tension–tension and compression–tension loadings perpendicular and parallel to the bed joints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injured bone initiates the healing process by forming a blood clot at the damaged site. However, in severe damage, synthetic bone implants are used to provide structural integrity and restore the healing process. The implant unavoidably comes into direct contact with whole blood, leading to a blood clot formation on its surface. Despite this, most research in bone tissue engineering virtually ignores the important role of a blood clot in supporting healing. Surface chemistry of a biomaterial is a crucial property in mediating blood-biomaterials interactions, and hence the formation of the resultant blood clot. Surfaces presenting mixtures of functional groups carboxyl (–COOH) and methyl (–CH3) have been shown to enhance platelet response and coagulation activation, leading to the formation of fibrin fibres. In addition, it has been shown that varying the compositions of these functional groups and the length of alkyl groups further modulate the immune complement response. In this study, we hypothesised that a biomaterial surface with mixture of –COOH/–CH3(methyl), –CH2CH3 (ethyl) or –(CH2)3CH3 (butyl) groups at different ratios would modulate blood coagulation and complement activation, and eventually tailor the structural and functional properties of the blood clot formed on the surface, which subsequently impacts new bone formation. Firstly, we synthesised a series of materials composed of acrylic acid (AA), and methyl (MMA), ethyl (EMA) or butyl methacrylates (BMA) at different ratios and coated on the inner surfaces of incubation vials. Our surface analysis showed that the amount of –COOH groups on the surface coatings was lower than the ratios of AA prepared in the materials even though the surface content of –COOH groups increased with increasing in AA ratios. It was indicated that the surface hydrophobicity increased with increasing alkyl chain length: –CH 3 > –CH2CH3 > –(CH2)3CH3, and decreased with increasing –COOH groups. No significant differences in surface hydrophobicity was found on surfaces with –CH3 and –CH2CH3 groups in the presence of –COOH groups. The material coating was as smooth as uncoated glass and without any major flaws. The average roughness of material-coated surface (3.99 ± 0.54 nm) was slightly higher than that of uncoated glass surface (2.22 ± 0.29 nm). However, no significant differences in surface average roughness was found among surfaces with the same functionalities at different –COOH ratios nor among surfaces with different alkyl groups but the same –COOH ratios. These suggested that the surface functional groups and their compositions had a combined effect on modulating surface hydrophobicity but not surface roughness. The second part of our study was to investigate the effect of surface functional groups and their compositions on blood cascade activation and structural properties of the formed clots. It was found that surfaces with –COOH/–(CH2)3CH3 induced a faster coagulation activation than those with –COOH/–CH3 and –CH2CH3, regardless of the –COOH ratios. An increase in –COOH ratios on –COOH/–CH3 and –CH2CH3 surfaces decreased the rate of activation. Moreover, all material-coated surfaces markedly reduced the complement activation compared to uncoated glass surfaces, and the pattern of complement activation was entirely similar to that of surface-induced coagulation, suggesting there is an interaction between two cascades. The clots formed on material-coated surfaces had thicker fibrin with a tighter network at the exterior when compared to uncoated glass surfaces. Compared to the clot exteriors, thicker fibrins with a loose network were found in clot interiors. Coated surfaces resulted in more rigid clots with a significantly slower fibrinolysis after 1 h of lysis when compared to uncoated glass surfaces. Significant differences in fibrinolysis after 1 h of lysis among clots on material-coated surfaces correlated well with the differences in fibrin thickness and density at clot exterior. In addition, more growth factors were released during clot formation than during clot lysis. From an intact clot, there was a correlation between the amount of PDGF-AB release and fibrin density. Highest amount of PDGF-AB was released from clots formed on surfaces with 40% –COOH/60% –CH 3 (i.e. 65MMA). During clot lysis, the release of PDGF-AB also correlated with the fibrinolytic rate while the release of TGF-â1 was influenced by the fibrin thickness. This suggested that different clot structures led to different release profiles of growth factors in clot intact and degrading stages. We further validated whether the clots formed on material-coatings provide the microenvironment for improved bone healing by using a rabbit femoral defect model. In this pilot study, the implantation of clots formed on 65MMA coatings significantly increased new bone formation with enhanced chondrogenesis, osteoblasts activity and vascularisation, but decreased inflammatory macrophage number at the defects after 4 weeks when compared to commercial bone grafts ChronOSTM â-TCP granules. Empty defects were observed when blood clot formation was inhibited. In summary, our study demonstrated that surface functional groups and their relative ratios on material coatings synergistically modulate activation of blood cascades, resultant fibrin architecture, rigidity, susceptibility to fibrinolysis as well as growth factor release of the formed clots, which ultimately alter the healing microenvironment of injured bones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nanostructured surface of biomaterials plays an important role in improving their in vitro cellular bioactivity as well as stimulating in vivo tissue regeneration. Inspired by the mussel’s adhesive versatility, which is thought to be due to the plaque–substrate interface being rich in 3,4-dihydroxy-L-phenylalamine (DOPA) and lysine amino acids, in this study we developed a self-assembly method to prepare a uniform calcium phosphate (Ca-P)/polydopamine composite nanolayer on the surface of b-tricalcium phosphate (b-TCP) bioceramics by soaking b-TCP bioceramics in Tris–dopamine solution. It was found that the addition of dopamine, reaction temperature and reaction time are three key factors inducing the formation of a uniform Ca-P/polydopamine composite nanolayer. The formation mechanism of a Ca-P/polydopamine composite nanolayer involved two important steps: (i) the addition of dopamine to Tris–HCl solution decreases the pH value and accelerates Ca and P ionic dissolution from the crystal boundaries of b-TCP ceramics; (ii) dopamine is polymerized to form self-assembled polydopamine film and, at the same time, nanosized Ca-P particles are mineralized with the assistance of polydopamine, in which the formation of polydopamine occurs simultaneously with Ca-P mineralization (formation of nanosized microparticles composed of calcium phosphate-based materials), and finally a self-assembled Ca-P/polydopamine composite nanolayer forms on the surface of the b-TCP ceramics. Furthermore, the formed self-assembled Ca-P/polydopamine composite nanolayer significantly enhances the surface roughness and hydrophilicity of b-TCP ceramics, and stimulates the attachment, proliferation, alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, COL1 and Runx2) of human bone marrow stromal cells. Our results suggest that the preparation of self-assembled Ca-P/polydopamine composite nanolayers is a viable method to modify the surface of biomaterials by significantly improving their surface physicochemical properties and cellular bioactivity for bone regeneration application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CFRP material has been widely used to strengthen concrete structures. There is an increasing trend of using CFRP in strengthening steel structures. The bond between steel and CFRP is a key issue. Relatively less work has been done on the bond between CFRP and a curved surface which is often found in tubular structures. This paper reports a study on the bond between CFRP and steel tubes. A series of tensile tests were conducted with different bond lengths and number of layers. The types of adhesive and specimen preparation methods varied in the testing program. High modulus CFRP was used. Tests were carried out to measure the modulus and tensile strength of CFRP. Strain gages were mounted on different layers of CFRP. The stress distributions across the layers of the CFRP were established. Models were developed to estimate the maximum load for a given CFRP arrangement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-body cryotherapy (WBC) involves short exposures to air temperatures below –100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Australian masonry standard allows either prism tests or correction factors based on the block height and mortar thickness to evaluate masonry compressive strength. The correction factor helps the taller units with conventional 10 mm mortar being not disadvantaged due to size effect. In recent times, 2-4 mm thick, high-adhesive mortars and H blocks with only the mid-web shell are used in masonry construction. H blocks and thinner and higher adhesive mortars have renewed interest of the compression behaviour of hollow concrete masonry and hence is revisited in this paper. This paper presents an experimental study carried out to examine the effects of the thickness of mortar joints, the type of mortar adhesives and the presence of web shells in the hollow concrete masonry prisms under axial compression. A non-contact digital image correlation technique was used to measure the deformation of the prisms and was found adequate for the determination of strain fi eld of the loaded face shells subjected to axial compression. It is found that the absence of end web shells lowers the compressive strength and stiffness of the prisms and the thinner and higher adhesive mortars increase the compressive strength and stiffness, while lowering the Poisson's ratio. © Institution of Engineers Australia, 2013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Acacia Light Wall is a permanent public artwork within the 3 stage Eden on the Yarra – a residential / commercial development on Victoria Street Abbotsford, Melbourne. The work was commissioned by the Hampton Group for Acacia Place, the first building in the development. The stylised screen was inspired by tangled wattle trees (Australia’s most common Acacia). The work consists of two walls, made from laser cut aluminium screen, acrylic ‘windows” Philips Colour Kinetic controllable LED (1250 nodes), Philips Colour Kinetics control ‘iPlayers”. One wall is 10 m long x 3 to 5 metres and the second is 12m by 3m. The windows are lit by an array of 600+ LED’s in each wall. These lights change colour from week to week marking the progress of the seasons. We worked with the project horticulturalist to develop a palate of colours for each week’s ‘light show’ that was drawn from local flowers and foliage likely to be in bloom that week. The lighting display is not static but rather a very slow moving (morphing) light show. It isn’t fast and flashy. Instead it’s restful and profound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Breast carcinoma is accompanied by changes in the acellular and cellular components of the microenvironment, the latter typified by a switch from fibroblasts to myofibroblasts. Methods: We utilised conditioned media cultures, Western blot analysis and immunocytochemistry to investigate the differential effects of normal mammary fibroblasts (NMFs) and mammary cancer-associated fibroblasts (CAFs) on the phenotype and behaviour of PMC42-LA breast cancer cells. NMFs were obtained from a mammary gland at reduction mammoplasty, and CAFs from a mammary carcinoma after resection. Results We found greater expression of myofibroblastic markers in CAFs than in NMFs. Medium from both CAFs and NMFs induced novel expression of α-smooth muscle actin and cytokeratin-14 in PMC42-LA organoids. However, although conditioned media from NMFs resulted in distribution of vimentin-positive cells to the periphery of PMC42-LA organoids, this was not seen with CAF-conditioned medium. Upregulation of vimentin was accompanied by a mis-localization of E-cadherin, suggesting a loss of adhesive function. This was confirmed by visualizing the change in active β-catenin, localized to the cell junctions in control cells/ cells in NMF-conditioned medium, to inactive β-catenin, localized to nuclei and cytoplasm in cells in CAF-conditioned medium. Conclusion We found no significant difference between the influences of NMFs and CAFs on PMC42-LA cell proliferation, viability, or apoptosis; significantly, we demonstrated a role for CAFs, but not for NMFs, in increasing the migratory ability of PMC42-LA cells. By concentrating NMF-conditioned media, we demonstrated the presence of factor(s) that induce epithelial-mesenchymal transition in NMF-conditioned media that are present at higher levels in CAF-conditioned media. Our in vitro results are consistent with observations in vivo showing that alterations in stroma influence the phenotype and behaviour of surrounding cells and provide evidence for a role for CAFs in stimulating cancer progression via an epithelial-mesenchymal transition. These findings have implications for our understanding of the roles of signalling between epithelial and stromal cells in the development and progression of mammary carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPARC (secreted protein acidic and rich in cysteine)/BM40/Osteonectin is a matricellular protein with multiple effects on cell behaviour. In vitro, its major known functions are anti-adhesive and anti-proliferative, and it is associated with tissue remodelling and cancer in vivo. SPARC is overexpressed in many cancers, including breast cancer, and the effects of SPARC seem to be cell type-specific. To study the effects of SPARC on breast cancer, we transfected SPARC into the MDA-MB-231 BAG, human breast cancer cell line using the Tet-On inducible system. By western analysis, we found low background levels in the MDA-MB-231 BAG and clone X parental cells, and prominent induction of SPARC protein expression after doxycycline treatment in SPARC transfected clones X5, X21, X24 and X75. Induction of SPARC expression did not affect cell morphology or adhesiveness to collagens type I and IV, but it slowed the rate of proliferation in adherent cultures. Cell cycle analysis showed that SPARC slowed the progression to S phase. Doxycycline induction of SPARC also slowed the rate of monolayer wound closure in the cultured wound healing assay. Thymidine inhibition of proliferation abrogated this effect, confirming that it was due to anti-proliferation rather than inhibition of migration. Consistent with this, we were unable to detect any differences in migration and Matrigel outgrowth analysis of doxycycline-stimulated cells. We conclude that SPARC is inhibitory to human breast cancer cell proliferation, and does not stimulate migration, in contrast to its stimulatory effects reported for melanoma (proliferation and migration) and glioma (migration) cells. Similar growth repression by SPARC has been reported for ovarian cancer cells, and this may be a common feature among carcinomas.