42 resultados para ALLYL METHACRYLATE
Resumo:
Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.
Resumo:
The development of hydrogels tailored for cartilage tissue engineering has been a research and clinical goal for over a decade. Directing cells towards a chondrogenic phenotype and promoting new matrix formation are significant challenges that must be overcome for the successful application of hydrogels in cartilage tissue therapies. Gelatin-methacrylamide (Gel-MA) hydrogels have shown promise for the repair of some tissues, but they have not been extensively investigated for cartilage tissue engineering. We encapsulated human chondrocytes in gel-MA based hydrogels, and show that with the incorporation of small quantities of photo-crosslinkable hyaluronic acid methacrylate (HA-MA), and to a lesser extent chondroitin sulfate methacrylate (CS-MA), chondrogenesis and mechanical properties can be enhanced. The addition of HA-MA to Gel-MA constructs resulted in more rounded cell morphologies, enhanced chondrogenesis as assessed by gene expression and immunofluorescence, and increased quantity and distribution of the newly synthesised ECM throughout the construct. Consequently, while the compressive moduli of control Gel-MA constructs increased by 26 kPa after 8 weeks culture, constructs with HA-MA and CS-MA increased by 96 kPa. The enhanced chondrogenic differentiation, distribution of ECM, and improved mechanical properties make these materials potential candidates for cartilage tissue engineering applications.
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
Three strategies for approaching the design and synthesis of non-chemically amplified resists (non-CARs) are presented. These are linear polycarbonates, star polyester-blk-poly(methyl methacrylate) and comb polymers with polysulfone backbones. The linear polycarbonates were designed to cleave when irradiated with 92 eV photons and high Tg alicyclic groups were incorporated into the backbone to increase Tg and etch resistance. The star block copolymers were designed to have a core that is sensitive to 92 eV photons and arms that have the potential to provide properties such as high Tg and etch resistance. Similarly the polysulfone comb polymers were designed to have an easily degradable polymer backbone and comb-arms that impart favorable physical properties. Initial patterning results are presented for a number of the systems.
Resumo:
The gas phase reactions of the bridgehead 3-carboxylato-1-adamantyl radical anion were observed with a series of neutral reagents using a modified electrospray ionisation linear ion trap mass spectrometer. This distonic radical anion was observed to undergo processes suggestive of radical reactivity including radical-radical combination reactions, substitution reactions and addition to carbon-carbon double bonds. The rate constants for reactions of the 3-carboxylato-1-adamantyl radical anion with the following reagents were measured ( in units 10(-12) cm(3) molecule(-1) s(-1)): O-18(2) ( 85 +/- 4), NO ( 38.4 +/- 0.4), I-2 ( 50 +/- 50), Br-2 ( 8 +/- 2), CH3SSCH3 ( 12 +/- 2), styrene ( 1.20 +/- 0.03), CHCl3 ( H abstraction 0.41 +/- 0.06, Cl abstraction 0.65 +/- 0.1), CDCl3 ( D abstraction 0.035 +/- 0.01, Cl abstraction 0.723 +/- 0.005), allyl bromide (Br abstraction 0.53 +/- 0.04, allylation 0.25 +/- 0.01). Collision rates were calculated and reaction efficiencies are also reported. This study represents the first quantitative measurement of the gas phase reactivity of a bridgehead radical and suggests that distonic radical anions are good models for the study of their elusive uncharged analogues.
Resumo:
The synthesis of thiophene-containing second (G2) and third generation (G3) dendronized macromonomers with methacrylate polymerizable units as well as their corresponding dendronized polymers is reported. The dendrons are prepared from branched thiophene oligomers and are decorated with straight alkyl chains for solubility reasons. The polymerization reactions were done with AIBN as initiator and the polymers were characterized by NMR spectroscopy, elemental analysis and GPC. Molar masses are in the range of 2.2-5.4 × 105 g mol-1 (G2) and 1.3-3.0 × 104 g mol-1 (G3) for different runs. These polymers are investigated by cyclic voltammetry and optical spectroscopy.
Resumo:
Theranostics offers an improved treatment strategy for prostate cancer by facilitating simultaneous targeting of tumour cells with subsequent drug delivery and imaging. In this report we describe the synthesis of hyperbranched polymers that are biocompatible, can specifically target and be internalised by prostate cancer cells (through targeting of prostate-specific membrane antigen – PSMA) and ultimately facilitate controlled delivery of a model drug. The theranostic also incorporates a far-red fluorescent dye that allows tracking of the polymer via optical imaging. Controlled synthesis of the polymer is achieved via reversible addition fragmentation chain transfer polymerisation of polyethylene glycol monomethyl methacrylate, with ethylene glycol dimethacrylate as the branching agent. Incorporation of 20 mol% of an hydrazide-methacrylate monomer allows post-ligation of a model drug, fluorene-2-carboxaldehyde, through a hydrolytically-degradable hydrazone linkage. The rate of degradation of this particular linker was enhanced at endosomal pH (pH = 5.5) where [similar]95% of the model drug was released in 4 hours compared to less than 5% released over the same period at physiological pH. The theranostic showed high uptake into prostate cancer cells expressing prostate-specific membrane antigen, while minimal uptake was observed in PC3 cells negative for PSMA, highlighting the enhanced efficacy of the targeting ligand.
Resumo:
Polymethacrylate monoliths, specifically poly(glycidyl methacrylate-co-ethylene dimethacrylate) or poly(GMA-co-EDMA) monoliths, are a new generation of chromatographic supports and are significantly different from conventional particle-based adsorbents, membranes, and other monolithic supports for biomolecule purification. Similar to other monoliths, polymethacrylate monoliths possess large pores which allow convective flow of mobile phase and result in high flow rates at reduced pressure drop, unlike particulate supports. The simplicity of the adsorbent synthesis, pH resistance, and the ease and flexibility of tailoring their pore size to that of the target biomolecule are the key properties which differentiate polymethacrylate monoliths from other monoliths. Polymethacrylate monoliths are endowed with reactive epoxy groups for easy functionalization (with anion-exchange, hydrophobic, and affinity ligands) and high ligand retention. In this review, the structure and performance of polymethacrylate monoliths for chromatographic purification of biomolecules are evaluated and compared to those of other supports. The development and use of polymethacrylate monoliths for research applications have grown rapidly in recent times and have enabled the achievement of high through-put biomolecule purification on semi-preparative and preparative scales.
Resumo:
Malaria is a global health problem; an effective vaccine is urgently needed. Due to the relative poverty and lack of infrastructure in malaria endemic areas, DNA-based vaccines that are stable at ambient temperatures and easy to formulate have great potential. While attention has been focused mainly on antigen selection, vector design and efficacy assessment, the development of a rapid and commercially viable process to manufacture DNA is generally overlooked. We report here a continuous purification technique employing an optimized stationary adsorbent to allow high-vaccine recovery, low-processing time, and, hence, high-productivity. A 40.0 mL monolithic stationary phase was synthesized and functionalized with amino groups from 2-Chloro-N,N- diethylethylamine hydrochloride for anion-exchange isolation of a plasmid DNA (pDNA) that encodes a malaria vaccine candidate, VR1020-PyMSP4/5. Physical characterization of the monolithic polymer showed a macroporous material with a modal pore diameter of 750 nm. The final vaccine product isolated after 3 min elution was homogeneous supercoiled plasmid with gDNA, RNA and protein levels in keeping with clinical regulatory standards. Toxicological studies of the pVR1020-PyMSP4/5 showed a minimum endotoxin level of 0.28 EU/m.g pDNA. This cost-effective technique is cGMP compatible and highly scalable for the production of DNA-based vaccines in commercial quantities, when such vaccines prove to be effective against malaria. © 2008 American Institute of Chemical Engineers.
Resumo:
The creation of a commercially viable and a large-scale purification process for plasmid DNA (pDNA) production requires a whole-systems continuous or semi-continuous purification strategy employing optimised stationary adsorption phase(s) without the use of expensive and toxic chemicals, avian/bovine-derived enzymes and several built-in unit processes, thus affecting overall plasmid recovery, processing time and economics. Continuous stationary phases are known to offer fast separation due to their large pore diameter making large molecule pDNA easily accessible with limited mass transfer resistance even at high flow rates. A monolithic stationary sorbent was synthesised via free radical liquid porogenic polymerisation of ethylene glycol dimethacrylate (EDMA) and glycidyl methacrylate (GMA) with surface and pore characteristics tailored specifically for plasmid binding, retention and elution. The polymer was functionalised with an amine active group for anion-exchange purification of pDNA from cleared lysate obtained from E. coli DH5α-pUC19 pellets in RNase/protease-free process. Characterization of the resin showed a unique porous material with 70% of the pores sizes above 300 nm. The final product isolated from anion-exchange purification in only 5 min was pure and homogenous supercoiled pDNA with no gDNA, RNA and protein contamination as confirmed with DNA electrophoresis, restriction analysis and SDS page. The resin showed a maximum binding capacity of 15.2 mg/mL and this capacity persisted after several applications of the resin. This technique is cGMP compatible and commercially viable for rapid isolation of pDNA.
Resumo:
There is a need for materials that are well suited for cartilage tissue engineering. Hydrogels have emerged as promising biomaterials for cartilage repair, since, like cartilage, they have high water content, and they allow cells to be encapsulated within the material in a genuinely three-dimensional microenvironment. In this study, we investigated the mechanical properties of tissue-engineered cartilage constructs using in vitro culture models incorporating human chondrocytes from osteoarthritis patients. We evaluated hydrogels formed from mixtures of photocrosslinkable gelatin-methacrylamide (Gel-MA) and varying concentrations (0–2%) of hyaluronic acid methacrylate (HA-MA). Initially, only small differences in the stiffness of each hydrogel existed. After 4 weeks of culture, and to a greater extent 8 weeks of culture, HA-MA had striking and concentration dependent impact on the changes in mechanical properties. For example, the initial compressive moduli of cell-laden constructs with 0 and 1% HA-MA were 29 and 41 kPa, respectively. After 8 weeks of culture, the moduli of these constructs had increased to 66 and 147 kPa respectively, representing a net improvement of 69 kPa for gels with 1% HA-MA. Similarly the equilibrium modulus, dynamic modulus, failure strength and failure strain were all improved in constructs containing HA-MA. Differences in mechanical properties did not correlate with glycosaminoglycan content, which did not vary greatly between groups, yet there were clear differences in aggrecan intensity and distribution as assessed using immunostaining. Based on the functional development with time in culture using human chondrocytes, mixtures of Gel-MA and HA-MA are promising candidates for cartilage tissue-engineering applications.