114 resultados para A-not-B error
Resumo:
The relationships between business planning and performance have divided the entrepreneurship research community for decades (Brinckmann et al, 2010). One side of this debate is the assumption that business plans may lock the firm in a specific direction early on, impede the firm to adapt to the changing market conditions (Dencker et al., 2009) and eventually, cause escalation of commitments by introducing rigidity (Vesper, 1993). Conversely, feedback received from the production and presentation of business plans may also lead the firm to take corrective actions. However, the mechanisms underlying the relationships between changes in business ideas, business plans and the performance of nascent firms are still largely unknown. While too many business idea changes may confuse stakeholders, exhaust the firm’s resources and hinder the undergoing legitimization process, some flexibility during the early stages of the venture may be beneficial to cope with the uncertainties surrounding new venture creation (Knight, 1921; March, 1982; Stinchcombe, 1965; Weick, 1979). Previous research has emphasized adaptability and flexibility as key success factors through effectual logic and interaction with the market (Sarasvathy, 2001; 2007) or improvisation and trial-and-error (Miner et al, 2001). However, those studies did not specifically investigate the role of business planning. Our objective is to reconcile those seemingly opposing views (flexibility versus rigidity) by undertaking a more fine-grained analysis at the relationships between business planning and changes in business ideas on a large longitudinal sample of nascent firms.
Resumo:
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
Resumo:
Purpose To study the protective effects and underlying molecular mechanisms of SAMC on carbon tetrachloride (CCl4)-induced acute hepatotoxicity in the mouse model. Methods Mice were intraperitoneally injected with CCl4 (50 μl/kg; single dose) to induce acute hepatotoxicity with or without a 2-h pre-treatment of SAMC intraperitoneal injection (200 mg/kg; single dose). After 8 h, the blood serum and liver samples of mice were collected and subjected to measurements of histological and molecular parameters of hepatotoxicity. Results SAMC reduced CCl4-triggered cellular necrosis and inflammation in the liver under histological analysis. Since co-treatment of SAMC and CCl4 enhanced the expressions of antioxidant enzymes, reduced the nitric oxide (NO)-dependent oxidative stress, and inhibited lipid peroxidation induced by CCl4. SAMC played an essential antioxidative role during CCl4-induced hepatotoxicity. Administration of SAMC also ameliorated hepatic inflammation induced by CCl4 via inhibiting the activity of NF-κB subunits p50 and p65, thus reducing the expressions of pro-inflammatory cytokines, mediators, and chemokines, as well as promoting pro-regenerative factors at both transcriptional and translational levels. Conclusions Our results indicate that SAMC mitigates cellular damage, oxidative stress, and inflammation in CCl4-induced acute hepatotoxicity mouse model through regulation of NF-κB. Garlic or garlic derivatives may therefore be a potential food supplement in the prevention of liver damage.
Resumo:
Background. Despite the demonstration that geminiviruses, like many other single stranded DNA viruses, are evolving at rates similar to those of RNA viruses, a recent study has suggested that grass-infecting species in the genus Mastrevirus may have co-diverged with their hosts over millions of years. This "co-divergence hypothesis" requires that long-term mastrevirus substitution rates be at least 100,000-fold lower than their basal mutation rates and 10,000-fold lower than their observable short-term substitution rates. The credibility of this hypothesis, therefore, hinges on the testable claim that negative selection during mastrevirus evolution is so potent that it effectively purges 99.999% of all mutations that occur. Results. We have conducted long-term evolution experiments lasting between 6 and 32 years, where we have determined substitution rates of between 2 and 3 × 10 -4substitutions/site/year for the mastreviruses Maize streak virus (MSV) and Sugarcane streak Réunion virus (SSRV). We further show that mutation biases are similar for different geminivirus genera, suggesting that mutational processes that drive high basal mutation rates are conserved across the family. Rather than displaying signs of extremely severe negative selection as implied by the co-divergence hypothesis, our evolution experiments indicate that MSV and SSRV are predominantly evolving under neutral genetic drift. Conclusion. The absence of strong negative selection signals within our evolution experiments and the uniformly high geminivirus substitution rates that we and others have reported suggest that mastreviruses cannot have co-diverged with their hosts. © 2009 Harkins et al; licensee BioMed Central Ltd.
Resumo:
Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.
Resumo:
Cerium ions (Ce3+) can beselectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E0(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+-doped nanofibers are irradiated by UV light, the doped Ce3+ ions in close vicinity to the interface between the TiO2(B) core and anatase nanoshell can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.
Resumo:
Video-based training combined with flotation tank recovery may provide an additional stimulus for improving shooting in basketball. A pre-post controlled trial was conducted to assess the effectiveness of a 3 wk intervention combining video-based training and flotation tank recovery on three-point shooting performance in elite female basketball players. Players were assigned to an experimental (n=10) and control group (n=9). A 3 wk intervention consisted of 2 x 30 min float sessions a week which included 10 min of video-based training footage, followed by a 3 wk retention phase. A total of 100 three-point shots were taken from 5 designated positions on the court at each week to assess three-point shooting performance. There was no clear difference in the mean change in the number of successful three-point shots between the groups (-3%; ±18%, mean; ±90% confidence limits). Video-based training combined with flotation recovery had little effect on three-point shooting performance.
Resumo:
Henmilite is a triclinic mineral with the crystal structure consisting of isolated B(OH)4 tetrahedra, planar Cu(OH)4 groups and Ca(OH)3 polyhedra. The structure can also be viewed as having dimers of Ca polyhedra connected to each other through 2B(OH) tetrahedra to form chains parallel to the C axis. The structure of the mineral has been assessed by the combination of Raman and infrared spectra. Raman bands at 902, 922, 951, and 984 cm−1 and infrared bands at 912, 955 and 998 cm−1 are assigned to stretching vibrations of tetragonal boron. The Raman band at 758 cm−1 is assigned to the symmetric stretching mode of tetrahedral boron. The series of bands in the 400–600 cm−1 region are due to the out-of-plane bending modes of tetrahedral boron. Two very sharp Raman bands are observed at 3559 and 3609 cm−1. Two infrared bands are found at 3558 and 3607 cm−1. These bands are assigned to the OH stretching vibrations of the OH units in henmilite. A series of Raman bands are observed at 3195, 3269, 3328, 3396, 3424 and 3501 cm−1 are assigned to water stretching modes. Infrared spectroscopy also identified water and OH units in the henmilite structure. It is proposed that water is involved in the structure of henmilite. Hydrogen bond distances based upon the OH stretching vibrations using a Libowitzky equation were calculated. The number and variation of water hydrogen bond distances are important for the stability off the mineral.
Resumo:
For the timber industry, the ability to simulate the drying of wood is invaluable for manufacturing high quality wood products. Mathematically, however, modelling the drying of a wet porous material, such as wood, is a diffcult task due to its heterogeneous and anisotropic nature, and the complex geometry of the underlying pore structure. The well{ developed macroscopic modelling approach involves writing down classical conservation equations at a length scale where physical quantities (e.g., porosity) can be interpreted as averaged values over a small volume (typically containing hundreds or thousands of pores). This averaging procedure produces balance equations that resemble those of a continuum with the exception that effective coeffcients appear in their deffnitions. Exponential integrators are numerical schemes for initial value problems involving a system of ordinary differential equations. These methods differ from popular Newton{Krylov implicit methods (i.e., those based on the backward differentiation formulae (BDF)) in that they do not require the solution of a system of nonlinear equations at each time step but rather they require computation of matrix{vector products involving the exponential of the Jacobian matrix. Although originally appearing in the 1960s, exponential integrators have recently experienced a resurgence in interest due to a greater undertaking of research in Krylov subspace methods for matrix function approximation. One of the simplest examples of an exponential integrator is the exponential Euler method (EEM), which requires, at each time step, approximation of φ(A)b, where φ(z) = (ez - 1)/z, A E Rnxn and b E Rn. For drying in porous media, the most comprehensive macroscopic formulation is TransPore [Perre and Turner, Chem. Eng. J., 86: 117-131, 2002], which features three coupled, nonlinear partial differential equations. The focus of the first part of this thesis is the use of the exponential Euler method (EEM) for performing the time integration of the macroscopic set of equations featured in TransPore. In particular, a new variable{ stepsize algorithm for EEM is presented within a Krylov subspace framework, which allows control of the error during the integration process. The performance of the new algorithm highlights the great potential of exponential integrators not only for drying applications but across all disciplines of transport phenomena. For example, when applied to well{ known benchmark problems involving single{phase liquid ow in heterogeneous soils, the proposed algorithm requires half the number of function evaluations than that required for an equivalent (sophisticated) Newton{Krylov BDF implementation. Furthermore for all drying configurations tested, the new algorithm always produces, in less computational time, a solution of higher accuracy than the existing backward Euler module featured in TransPore. Some new results relating to Krylov subspace approximation of '(A)b are also developed in this thesis. Most notably, an alternative derivation of the approximation error estimate of Hochbruck, Lubich and Selhofer [SIAM J. Sci. Comput., 19(5): 1552{1574, 1998] is provided, which reveals why it performs well in the error control procedure. Two of the main drawbacks of the macroscopic approach outlined above include the effective coefficients must be supplied to the model, and it fails for some drying configurations, where typical dual{scale mechanisms occur. In the second part of this thesis, a new dual{scale approach for simulating wood drying is proposed that couples the porous medium (macroscale) with the underlying pore structure (microscale). The proposed model is applied to the convective drying of softwood at low temperatures and is valid in the so{called hygroscopic range, where hygroscopically held liquid water is present in the solid phase and water exits only as vapour in the pores. Coupling between scales is achieved by imposing the macroscopic gradient on the microscopic field using suitably defined periodic boundary conditions, which allows the macroscopic ux to be defined as an average of the microscopic ux over the unit cell. This formulation provides a first step for moving from the macroscopic formulation featured in TransPore to a comprehensive dual{scale formulation capable of addressing any drying configuration. Simulation results reported for a sample of spruce highlight the potential and flexibility of the new dual{scale approach. In particular, for a given unit cell configuration it is not necessary to supply the effective coefficients prior to each simulation.
Resumo:
Hepatitis B is a significant public health challenge within some subpopulations in Australia, including Chinese and Vietnamese migrants. There has been limited research on hepatitis B knowledge and actions in these communities. The authors conducted a self-administered survey among 442 Chinese and 433 Vietnamese in Brisbane. Generally, the knowledge is best described as “moderate.” One in 2 could not identify the sexual transmission risk and less than one third knew that sharing foods or drinks did not spread the disease. The majority of Vietnamese (80%) and 60% of Chinese respondents indicated prior testing. Vaccination was reported in 60% of the Vietnamese and in 52% of the Chinese. Knowledge was better among Chinese people who had been tested and vaccinated compared with those who were nontested and nonvaccinated. Only 3.5% of the Chinese, but 11.6% of the Vietnamese, indicated having a positive test result hepatitis B virus. This study helps identify strategies for programs targeting both communities and practitioners.
Resumo:
THE UVI working group acknowledges the contribution of Vitamin D to bone health as stated in our paper. However, we concluded that an optimal level of Vitamin D for humans has not yet been established with any certainty...
Resumo:
Background It has been proposed that the feral horse foot is a benchmark model for foot health in horses. However, the foot health of feral horses has not been formally investigated. Objectives To investigate the foot health of Australian feral horses and determine if foot health is affected by environmental factors, such as substrate properties and distance travelled. Methods Twenty adult feral horses from five populations (n = 100) were investigated. Populations were selected on the basis of substrate hardness and the amount of travel typical for the population. Feet were radiographed and photographed, and digital images were surveyed by two experienced assessors blinded to each other's assessment and to the population origin. Lamellar samples from 15 feet from three populations were investigated histologically for evidence of laminitis. Results There was a total of 377 gross foot abnormalities identified in 100 left forefeet. There were no abnormalities detected in three of the feet surveyed. Each population had a comparable prevalence of foot abnormalities, although the type and severity of abnormality varied among populations. Of the three populations surveyed by histopathology, the prevalence of chronic laminitis ranged between 40% and 93%. Conclusions Foot health appeared to be affected by the environment inhabited by the horses. The observed chronic laminitis may be attributable to either nutritional or traumatic causes. Given the overwhelming evidence of suboptimal foot health, it may not be appropriate for the feral horse foot to be the benchmark model for equine foot health.
Resumo:
One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.
Resumo:
Classifier selection is a problem encountered by multi-biometric systems that aim to improve performance through fusion of decisions. A particular decision fusion architecture that combines multiple instances (n classifiers) and multiple samples (m attempts at each classifier) has been proposed in previous work to achieve controlled trade-off between false alarms and false rejects. Although analysis on text-dependent speaker verification has demonstrated better performance for fusion of decisions with favourable dependence compared to statistically independent decisions, the performance is not always optimal. Given a pool of instances, best performance with this architecture is obtained for certain combination of instances. Heuristic rules and diversity measures have been commonly used for classifier selection but it is shown that optimal performance is achieved for the `best combination performance' rule. As the search complexity for this rule increases exponentially with the addition of classifiers, a measure - the sequential error ratio (SER) - is proposed in this work that is specifically adapted to the characteristics of sequential fusion architecture. The proposed measure can be used to select a classifier that is most likely to produce a correct decision at each stage. Error rates for fusion of text-dependent HMM based speaker models using SER are compared with other classifier selection methodologies. SER is shown to achieve near optimal performance for sequential fusion of multiple instances with or without the use of multiple samples. The methodology applies to multiple speech utterances for telephone or internet based access control and to other systems such as multiple finger print and multiple handwriting sample based identity verification systems.
Resumo:
Establishing age-at-death for skeletal remains is a vital component of forensic anthropology. The Suchey-Brooks (S-B) method of age estimation has been widely utilised since 1986 and relies on a visual assessment of the pubic symphyseal surface in comparison to a series of casts. Inter-population studies (Kimmerle et al., 2005; Djuric et al., 2007; Sakaue, 2006) demonstrate limitations of the S-B method, however, no assessment of this technique specific to Australian populations has been published. Aim: This investigation assessed the accuracy and applicability of the S-B method to an adult Australian Caucasian population by highlighting error rates associated with this technique. Methods: Computed tomography (CT) and contact scans of the S-B casts were performed; each geometrically modelled surface was extracted and quantified for reference purposes. A Queensland skeletal database for Caucasian remains aged 15 – 70 years was initiated at the Queensland Health Forensic and Scientific Services – Forensic Pathology Mortuary (n=350). Three-dimensional reconstruction of the bone surface using innovative volume visualisation protocols in Amira® and Rapidform® platforms was performed. Samples were allocated into 11 sub-sets of 5-year age intervals and changes associated with the surface geometry were quantified in relation to age, gender and asymmetry. Results: Preliminary results indicate that computational analysis was successfully applied to model morphological surface changes. Significant differences in observed versus actual ages were noted. Furthermore, initial morphological assessment demonstrates significant bilateral asymmetry of the pubic symphysis, which is unaccounted for in the S-B method. These results propose refinements to the S-B method, when applied to Australian casework. Conclusion: This investigation promises to transform anthropological analysis to be more quantitative and less invasive using CT imaging. The overarching goal contributes to improving skeletal identification and medico-legal death investigation in the coronial process by narrowing the range of age-at-death estimation in a biological profile.