72 resultados para 670802 Aluminium
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
The main constituents of red mud produced in Aluminio city (S.P. – Brazil) are iron, aluminium and silicon oxides. It has been determined that the average particle diameter for this red mud is between 0.05 and 0.002mm. It is observed that a decrease in the percentage of smaller particles occurs at temperatures greater than 400°C. This observation corresponds with the thermal analysis and X-ray diffraction (XRD) data, which illustrate the phase transition of goethite to hematite. A 10% mass loss is observed in the thermal analysis patterns due to the hydroxide – oxide phase transitions of iron (primary phase transition) and aluminium (to a lesser extent). The disappearance and appearance of the different phases of iron and aluminium confirms the decomposition reactions proposed by the thermal analysis data. This Brazilian red mud has been classified as mesoporous at all temperatures except between 400 and 500°C where the classification changes to micro/mesoporous.
Resumo:
The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.
Resumo:
Australian manufacturers recently developed a new mono-symmetric cold-formed steel hollow flange channel section known as LiteSteel Beam. The innovative LSB sections with rectangular flanges are currently being used as floor joists and bearers in buildings. In order to assess their behaviour and section moment capacity including the presence of any inelastic reserve bending capacity, 20 section moment capacity tests were conducted in this study. Test results were compared with the section moment capacities predicted by the steel design codes. Although the current cold-formed steel design rules generally limit the section moment capacities to their first yield moments, test results showed that inelastic reserve bending capacity was present in the compact and non-compact LSB sections. The results have shown that suitable modifications to the current design rules are needed to allow the inclusion of available inelastic bending capacities of LSBs in design.
Resumo:
The judgement in Hennessey Glass and Aluminium Pty Ltd v Watpac Australia Pty Ltd [2007] QDC 57 McGill DCJ provides valuable guidance for practitioners as to whether a range of particular costs items should be permitted on an assessment on the standard basis, and the amounts which should be allowed for such items. The items in issue included counsel’s fees and fees paid to expert witnesses. The decision also examined GST implications for the recovery of legal costs.
Influence of organic matter in road deposited particulates in heavy metal accumulation and transport
Resumo:
The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.
Resumo:
Understanding the impacts of traffic and climate change on water quality helps decision makers to develop better policy and plans for dealing with unsustainable urban and transport development. This chapter presents detailed methodologies developed for sample collection and testing for heavy metals and total petroleum hydrocarbons, as part of a research study to investigate the impacts of climate change and changes to urban traffic characteristics on pollutant build-up and wash-off from urban road surfaces. Cadmium, chromium, nickel, copper, lead, iron, aluminium, manganese and zinc were the target heavy metals, and selected gasoline and diesel range organics were the target total petroleum hydrocarbons for this study. The study sites were selected to encompass the urban traffic characteristics of the Gold Coast region, Australia. An improved sample collection method referred to as ‘the wet and dry vacuum system’ for the pollutant build-up, and an effective wash-off plan to incorporate predicted changes to rainfall characteristics due to climate change, were implemented. The novel approach to sample collection for pollutant build-up helped to maintain the integrity of collection efficiency. The wash-off plan helped to incorporate the predicted impacts of climate change in the Gold Coast region. The robust experimental methods developed will help in field sample collection and chemical testing of different stormwater pollutants in build-up and wash-off.
Resumo:
Layered doubly hydroxides (LDHs) also known as hydrotalcites or anionic clays are a group of clay minerals that have shown promise for the removal of toxic anions from water through both anion exchange and a process known as the reformation effect. This project has involved the preparation and characterisation of LDH materials as well as the investigation of their ability to remove selected anions from aqueous solutions by the reformation effect. The LDH materials were successfully prepared from magnesium, aluminium, zinc and chromium chloride salts using the co-precipitation method. Samples were characterised using powder X-ray diffraction (XRD) and thermogravimetry (TG) to confirm the presence of LDHs. Powder XRD revealed a characteristic LDH structure for all LDH samples. Thermal Analysis showed decomposition usual occurred through a three or four step process as expected for LDHs. Preliminary investigations of the removal of sulfate, nitrate and fluoride by an Mg/Al LDH were carried out, and the products were characterised using XRD and TG which showed that an LDH material similar to the original hydrotalcite was formed after reformation. A Zn/Al LDH was investigated as a potential sorbent material for the removal of iodine and iodide from water. It was found that the LDH was a suitable adsorbent which is able to remove almost all of the iodine present in the test solutions. Again, the products were characterised by XRD, TG and evolved gas mass spectrometry (EGMS) in an attempt to better understand the iodine removal process. Powder XRD showed successful reformation of the LDH structure and TG/EGMS showed that only a small amount of iodine species were lost during thermal decomposition. Finally, the mineral stichtite a Mg/Cr LDH was successfully synthesised and investigated using XRD, TG and EGMS. Unfortunately, due to lack of time it was not possible to identify any new uses for the mineral stichtite in the current project.
Resumo:
Reliable approaches for predicting pollutant build-up are essential for accurate urban stormwater quality modelling. Based on the in-depth investigation of metal build-up on residential road surfaces, this paper presents empirical models for predicting metal loads on these surfaces. The study investigated metals commonly present in the urban environment. Analysis undertaken found that the build-up process for metals primarily originating from anthropogenic (copper and zinc) and geogenic (aluminium, calcium, iron and manganese) sources were different. Chromium and nickel were below detection limits. Lead was primarily associated with geogenic sources, but also exhibited a significant relationship with anthropogenic sources. The empirical prediction models developed were validated using an independent data set and found to have relative prediction errors of 12-50%, which is generally acceptable for complex systems such as urban road surfaces. Also, the predicted values were very close to the observed values and well within 95% prediction interval.
Resumo:
A review of 291 catalogued particles on the bases of particle size, shape, bulk chemistry, and texture is used to establish a reliable taxonomy. Extraterrestrial materials occur in three defined categories: spheres, aggregates and fragments. Approximately 76% of aggregates are of probable extraterrestrial origin, whereas spheres contain the smallest amount of extraterrestrial material (approx 43%). -B.M.
Resumo:
Heavy Weather was a monumental sculptural work produced for the prestigious McClelland National Sculpture Survey in 2012. The work was a large cold-cast aluminium figure depicting the artist in athletic costume arching backwards across the top of massive boulder. The pose of the figure was derived from the ‘Fosbury flop’, the awkward backwards manoeuvre associated with high-jump event. The boulder was a portrait of a different kind - a remake of the Ian Fairweather memorial on Bribie Island but elongated to tower upwards. The work thus emphasised two contrasting impressions of movement – immense inertia and writhing agility. Heavy Weather sought to bring these two opposing forces together as a way of representing the tensions that shape our relationship with objects. In so doing, the work contributed to the artist’s ongoing exploration of sculpture, self-portraiture and the civic monument. The work was promoted nationally including the Art Guide and the Melbourne Review. It was also the subject of a article in the Australian Art Collector.
Resumo:
Jeremejevite is a borate mineral of aluminium and is of variable colour, making the mineral and important inexpensive jewel. The mineral contains variable amounts of F and OH, depending on origin. A comparison of the vibrational spectroscopic data is made with the published data of borate minerals. Raman spectra were averaged over a range of crystal orientations. Two intense Raman bands observed at 961 and 1067 cm−1 are assigned to the symmetric stretching and antisymmetric stretching modes of trigonal boron. Infrared spectrum, bands observed at 1229, 1304, 1350, 1388 and 1448 cm−1 are attributed to BOH in-plane bending modes. Intense Raman band found at 372 cm−1 with other bands of significant intensity at 327 and 417 cm−1 is assigned to trigonal borate bending modes. A quite intense Raman band is found at 3673 cm−1 with other sharp Raman bands found at 3521, 3625 and 3703 cm−1 are assigned to the stretching modes of OH. Raman and infrared spectroscopy has been used to assess the molecular structure of the mineral jeremejevite. Such research is important in the study of borate based nanomaterials.
Resumo:
A process for catalytic conversion and/or adsorption of gases inclusive of NOx, SOx, CO2, CO, dioxins and PAHs and combinations thereof wherein said gases may contain particulates which include contacting one or more of such gases with an alumino-silicate material having: a primarily tetrahedrally co-ordinated aluminium as established by the fact that the 27 A1 Magic Angle Spinning (MAS) provides a single peak at 55-58 ppm (FWHM ~23 ppm) relative to Al(H 2 0) 6 3 and (ii) a cation exchange capacity of at least 1 meq 100 in aqueous solution at room temperature.
Resumo:
The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm−1 assigned to the View the MathML source ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm−1 assigned to the View the MathML source ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm−1 attributed to the View the MathML source ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.
Resumo:
The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant.