36 resultados para 511
Resumo:
The development of semi aromatic polyamide/organoclays nanocomposites (PANC) is reported in this communication. New polyamide (PA) was successfully synthesized through direct polycondensation reaction between bio-based diacid and aromatic diamine. PA exhibited strong UV vis absorption band at 412 nm. Its photoluminescence spectrum showed maximum band at 511 nm in the green region. The surface modification of montmorillonite was carried out through ion-exchange reaction using 1,4-bis[4-aminophenoxy]butane (APB) as a modifier. Then PANCs containing 3 and 6 wt.% of the modified montmorillonite (MMT-APB) were prepared. Flammability and thermal properties of PA and the nanocomposites were studied by microscale combustion calorimeter (MCC), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results in both air and nitrogen atmospheres indicated improving in thermal properties of PANCs compared to the neat PA. According to MCC analysis, a 31.6% reduction in pHRR value has been achieved by introducing 6 wt.% of the organoclay in PA matrix.
Resumo:
The access to mobile technologies is growing at an exponential rate in developed and developing countries, with some developing countries surpassing developed countries in terms of device ownership. It is both the demand for, and high usage of mobile technologies that have driven new and emerging pedagogical practices in higher education. These technologies have also exponentially increased access to information in a knowledge economy. While differences are often drawn between developing and developed countries in terms of the access and use of information and communication technologies (ICT), this paper will report on a study detailing how higher education students use mobile technologies and social media in their studies and in their personal lives. It will contrast the similarities in how students from an Australian and Vietnamese university access and use mobile and social media technologies while also highlighting ways in which these technologies can be embraced by academics to connect and engage with students.
Resumo:
Objective: To test the association of interleukin 1 (IL1) gene family members with ankylosing spondylitis (AS), previously reported in Europid subjects, in an ethnically remote population. Methods: 200 Taiwanese Chinese AS patients and 200 ethnically matched healthy controls were genotyped for five single nucleotide polymorphisms (SNPs) and the IL1RN.VNTR, markers previously associated with AS. Allele, genotype, and haplotype frequencies were compared between cases and controls. Results: Association of alleles and genotypes of the markers IL1F10.3, IL1RN.4, and IL1RN.VNTR was observed with AS (p<0.05). Haplotypes of pairs of these markers and of the markers IL1RN.6/1 and IL1RN.6/2 were also significantly associated with AS. The strongest associations observed were with the marker IL1RN.4, and with the two-marker haplotype IL1RN.4-IL1RN.VNTR (both p = 0.004). Strong linkage disequilibrium was observed between all marker pairs except those involving IL1B-511 (D′ 0.4 to 0.9, p<0.01). Conclusions: The IL1 gene cluster is associated with AS in Taiwanese Chinese. This finding provides strong statistical support that the previously observed association of this gene cluster with AS is a true positive finding.
Resumo:
Systematic reviews and meta-analyses are used to combine results across studies to determine an overall effect. Meta-analysis is especially useful for combining evidence to inform social policy, but meta-analyses of applied social science research may encounter practical issues arising from the nature of the research domain. The current paper identifies potential resolutions to four issues that may be encountered in systematic reviews and meta-analyses in social research. The four issues are: scoping and targeting research questions appropriate for meta-analysis; selecting eligibility criteria where primary studies vary in research design and choice of outcome measures; dealing with inconsistent reporting in primary studies; and identifying sources of heterogeneity with multiple confounded moderators. The paper presents an overview of each issue with a review of potential resolutions, identified from similar issues encountered in meta-analysis in medical and biological sciences. The discussion aims to share and improve methodology in systematic reviews and meta-analysis by promoting cross-disciplinary communication, that is, to encourage 'viewing through different lenses'.
Resumo:
Prior genome-wide association studies (GWAS) of major depressive disorder (MDD) have met with limited success. We sought to increase statistical power to detect disease loci by conducting a GWAS mega-analysis for MDD. In the MDD discovery phase, we analyzed more than 1.2 million autosomal and X chromosome single-nucleotide polymorphisms (SNPs) in 18 759 independent and unrelated subjects of recent European ancestry (9240 MDD cases and 9519 controls). In the MDD replication phase, we evaluated 554 SNPs in independent samples (6783 MDD cases and 50 695 controls). We also conducted a cross-disorder meta-analysis using 819 autosomal SNPs with P<0.0001 for either MDD or the Psychiatric GWAS Consortium bipolar disorder (BIP) mega-analysis (9238 MDD cases/8039 controls and 6998 BIP cases/7775 controls). No SNPs achieved genome-wide significance in the MDD discovery phase, the MDD replication phase or in pre-planned secondary analyses (by sex, recurrent MDD, recurrent early-onset MDD, age of onset, pre-pubertal onset MDD or typical-like MDD from a latent class analyses of the MDD criteria). In the MDD-bipolar cross-disorder analysis, 15 SNPs exceeded genome-wide significance (P<5 x 10(-8)), and all were in a 248 kb interval of high LD on 3p21.1 (chr3:52 425 083-53 822 102, minimum P=5.9 x 10(-9) at rs2535629). Although this is the largest genome-wide analysis of MDD yet conducted, its high prevalence means that the sample is still underpowered to detect genetic effects typical for complex traits. Therefore, we were unable to identify robust and replicable findings. We discuss what this means for genetic research for MDD. The 3p21.1 MDD-BIP finding should be interpreted with caution as the most significant SNP did not replicate in MDD samples, and genotyping in independent samples will be needed to resolve its status.
Resumo:
The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF = 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.