38 resultados para 499
Resumo:
Purpose The role of fine lactose in the dispersion of salmeterol xinafoate (SX) from lactose mixtures was studied by modifying the fine lactose concentration on the surface of the lactose carriers using wet decantation. Methods Fine lactose was removed from lactose carriers by wet decantation using ethanol saturated with lactose. Particle sizing was achieved by laser diffraction. Fine particle fractions (FPFs) were determined by Twin Stage Impinger using a 2.5% SX mixture, and SX was analyzed by a validated high-performance liquid chromatography method. Adhesion forces between probes of SX and silica and the lactose surfaces were determined by atomic force microscopy. Results FPFs of SX were related to fine lactose concentration in the mixture for inhalation grade lactose samples. Reductions in FPF (2-4-fold) of Aeroflo 95 and 65 were observed after removing fine lactose by wet decantation; FPFs reverted to original values after addition of micronized lactose to decanted mixtures. FPFs of SX of sieved and decanted fractions of Aeroflo carriers were significantly different (p < 0.001). The relationship between FPF and fine lactose concentration was linear. Decanted lactose demonstrated surface modification through increased SX-lactose adhesion forces; however, any surface modification other than removal of fine lactose only slightly influenced FPF. Conclusions Fine lactose played a key and dominating role in controlling FPF. SX to fine lactose ratios influenced dispersion of SX with maximum dispersion occurring as the ratio approached unity.
Resumo:
The structures of the isomorphous potassium and rubidium polymeric coordination complexes with 4-nitrobenzoic acid, poly[mu2-aqua-aqua-mu3-(4-nitrobenzoato)-potassium], [K(C7H4N2O2)(H2O)2]n, (I) and poly[mu3-aqua-aqua-mu5-(4-nitrobenzoato)-rubidium], [Rb(C7H4N2O2)(H2O)2]n, (II) have been determined. In (I) the very distorted KO6 coordination sphere about the K+ centres in the repeat unit comprise two bridging nitro O-atom donors, a single bridging carboxyl O-atom donor and two water molecules, one of which is bridging. In the the Rb complex (II), the same basic MO6 coordination is found in the repeat unit but is expanded to RbO9 through a slight increase in the accepted Rb-O bond length range and includes an additional Rb-O(carboxyl) bond, completing a bidentate O,O'-chelate interaction, and additional bridging Rb-Onitro) and Rb-O(water) bonds. The comparative K-O and Rb-O bond length ranges are 2.738(3)-3.002(3)Ang. (I) and 2.884(2)-3.182(2)Ang. (II). The structure of (II) is also isomorphous as well as isostructural with the known structure of the nine-coordinate caesium 4-nitrobenzoate analogue, [Cs(C7H4N2O~2~)(H~2~O)2]n, (III) in which the Cs---O range is 3.047(4)-3.338(4)Ang. In all three complexes, common basic polymeric extensions are found, including two different centrosymmetric bridging interactions through both water and nitro groups as well as extensions along c through the p-related carboxyl group, giving a two-dimensional structure in (I). In (II) and (III), three-dimensional structures are generated through additional bridges through the nitro and water O-atoms. In all structures, both water molecules are involved in similar intra-polymer O-H...O hydrogen-bonding interactions to both carboxyl as well as water O-atom acceptors. A comparison of the varied coordination behaviour of the full set of Li-Cs salts with 4-nitrobenzoic acid is also made.
Resumo:
INTRODUCTION Although the high heritability of BMD variation has long been established, few genes have been conclusively shown to affect the variation of BMD in the general population. Extreme truncate selection has been proposed as a more powerful alternative to unselected cohort designs in quantitative trait association studies. We sought to test these theoretical predictions in studies of the bone densitometry measures BMD, BMC, and femoral neck area, by investigating their association with members of the Wnt pathway, some of which have previously been shown to be associated with BMD in much larger cohorts, in a moderate-sized extreme truncate selected cohort (absolute value BMD Z-scores = 1.5-4.0; n = 344). MATERIALS AND METHODS Ninety-six tag-single nucleotide polymorphism (SNPs) lying in 13 Wnt signaling pathway genes were selected to tag common genetic variation (minor allele frequency [MAF] > 5% with an r(2) > 0.8) within 5 kb of all exons of 13 Wnt signaling pathway genes. The genes studied included LRP1, LRP5, LRP6, Wnt3a, Wnt7b, Wnt10b, SFRP1, SFRP2, DKK1, DKK2, FZD7, WISP3, and SOST. Three hundred forty-four cases with either high or low BMD were genotyped by Illumina Goldengate microarray SNP genotyping methods. Association was tested either by Cochrane-Armitage test for dichotomous variables or by linear regression for quantitative traits. RESULTS Strong association was shown with LRP5, polymorphisms of which have previously been shown to influence total hip BMD (minimum p = 0.0006). In addition, polymorphisms of the Wnt antagonist, SFRP1, were significantly associated with BMD and BMC (minimum p = 0.00042). Previously reported associations of LRP1, LRP6, and SOST with BMD were confirmed. Two other Wnt pathway genes, Wnt3a and DKK2, also showed nominal association with BMD. CONCLUSIONS This study shows that polymorphisms of multiple members of the Wnt pathway are associated with BMD variation. Furthermore, this study shows in a practical trial that study designs involving extreme truncate selection and moderate sample sizes can robustly identify genes of relevant effect sizes involved in BMD variation in the general population. This has implications for the design of future genome-wide studies of quantitative bone phenotypes relevant to osteoporosis.
Resumo:
We have investigated the role of 23 candidate genes in the control of bone mineral density (BMD) by linkage studies in families of probands with osteoporosis (lumbar spine [LS] or femoral neck [FN] BMD T score < -2.5) and low BMD relative to an age- and gender-matched cohort (Z score < -2.0). One hundred and fifteen probands (35 male, 80 female) and 499 of their first- or second-degree relatives (223 males and 276 females) were recruited for the study. BMD was measured at the LS and FN using dual-energy X-ray absorptiometry and expressed as age- and gender-matched Z scores corrected for body mass index. The candidate genes studied were the androgen receptor, type I collagen A1 (COLIA1), COLIA2, COLIIA1, vitamin D receptor (VDR), colony-stimulating factor 1, calcium-sensing receptor, epidermal growth factor (EGF), estrogen receptor 1 (ESR1), fibrillin type 1, insulin-like growth factor 1, interleukin-1 alpha (IL-1α), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-11 (IL-11), osteopontin, parathyroid hormone (PTH), PTH-related peptide, PTH receptor type 1 (PTHR1), transforming growth factor-beta 1, and tumor necrosis factors alpha and beta. Sixty-four microsatellites lying close to or within these genes were investigated for linkage with BMD. Using the program MapMaker/Sibs there was suggestive evidence of linkage between BMD and PTHR1 (maximum LOD score obtained [MLS] 2.7-3.5). Moderate evidence of linkage was also observed with EGF (MLS 1.8), COLIA1 (MLS 1.7), COLIIA1/VDR (MLS 1.7), ESR1 (MLS 1.4), IL-1α (MLS 1.4), IL-4 (MLS 1.2), and IL-6 (MLS 1.2). Variance components analysis using the program ACT, correcting for proband-wise ascertainment, also showed evidence of linkage (p ≤0.05) at markers close to or within the candidate genes IL- 1α, PTHR1, IL-6, and COLIIA1/VDR. Further studies will be required to confirm these findings, to refine the location of gene responsible for the observed linkage, and to screen the candidate genes targeted at these loci for mutations.
Resumo:
Purpose To determine i) the architectural adaptations of the biceps femoris long head (BFlf) following concentric or eccentric strength training interventions; ii) the time course of adaptation during training and detraining. Methods Participants in this randomized controlled trial (control [n=28], concentric training group [n=14], eccentric training group [n=14], males) completed a 4-week control period, followed by 6 weeks of either concentric- or eccentric-only knee flexor training on an isokinetic dynamometer and finished with 28 days of detraining. Architectural characteristics of BFlf were assessed at rest and during graded isometric contractions utilizing two-dimensional ultrasonography at 28 days pre-baseline, baseline, days 14, 21 and 42 of the intervention and then again following 28 days of detraining. Results BFlf fascicle length was significantly longer in the eccentric training group (p<0.05, d range: 2.65 to 2.98) and shorter in the concentric training group (p<0.05, d range: -1.62 to -0.96) after 42 days of training compared to baseline at all isometric contraction intensities. Following the 28-day detraining period, BFlf fascicle length was significantly reduced in the eccentric training group at all contraction intensities compared to the end of the intervention (p<0.05, d range: -1.73 to -1.55). There was no significant change in fascicle length of the concentric training group following the detraining period. Conclusions These results provide evidence that short term resistance training can lead to architectural alterations in the BFlf. In addition, the eccentric training-induced lengthening of BFlf fascicle length was reversed and returned to baseline values following 28 days of detraining. The contraction mode specific adaptations in this study may have implications for injury prevention and rehabilitation.
Resumo:
Patents provide monopoly rights to patent holders. There are safeguards in patent regime to ensure that exclusive right of the patent holder is not misused. Compulsory licensing is one of the safeguards provided under TRIPS using which patent granting state may allow a third party to exploit the invention without patent holder’s consent upon terms and conditions decided by the government. This concept existed since 1623 and was not introduced by TRIPS for the first time. But this mechanism has undergone significant changes especially in post-TRIPS era. History of evolution of compulsory licensing is one of the least explored areas of intellectual property law. This paper undertakes an analysis of different phases in the evolution of the compulsory licensing mechanism and sheds light on reasons behind developments especially after TRIPS.
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.