48 resultados para 4-methyl-3-penten-2-one
Resumo:
Purpose – The purpose of this paper is to present a selection of responses to the report Fashion Victims, published by War on Want in December 2006. It offers a range of viewpoints presented by members of the Editorial Advisory Board of CPOIB. These are presented in chronological order of submission. There is some cross-reference by contributors to the work of others, but no attempt is made to present a unified argument. Design/methodology/approach – Presents the full contributions of involved participants, without mediation or editorial change. Findings – A number of different perspectives are presented on the central issue that is summarised by the opening heading in War on Want’s report – “How cheap is too cheap?” It is seen that the answer to this question is very much dependent upon the standpoint of the respondent. Originality/value – In presenting this form of commentary, members of the CPOIB Editorial Board seek to stimulate debate about an issue of concern to contemporary society, without resort to the time delay and mediating processes of peer-review normally attached to academic writing. It is hoped that this discussion will provoke further contributions and a widening of the debate. Keywords Corporate social responsibility, Multinational companies, Conditions of employment, Trade unions
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.
Resumo:
Deep inelastic neutron scattering measurements on liquid 3He-4He mixtures in the normal phase have been performed on the VESUVIO spectrometer at the ISIS pulsed neutron source at exchanged wave vectors of about q≃120.0Å-1. The neutron Compton profiles J(y) of the mixtures were measured along the T=1.96K isotherm for 3He concentrations, x, ranging from 0.1 to 1.0 at saturated vapor pressures. Values of kinetic energies 〈T〉 of 3He and 4He atoms as a function of x, 〈T〉(x), were extracted from the second moment of J(y). The present determinations of 〈T〉(x) confirm previous experimental findings for both isotopes and, in the case of 3He, a substantial disagreement with theory is found. In particular 〈T〉(x) for the 3He atoms is found to be independent of concentration yielding a value 〈T〉3(x=0.1)≃12K, much lower than the value suggested by the most recent theoretical estimates of approximately 19 K.
Resumo:
Vibrational spectroscopy enables subtle details of the molecular structure of kapundaite to be determined. Single crystals of a pure phase from a Brazilian pegmatite were used. Kapundaite is the Fe3+ member of the wardite group. The infrared and Raman spectroscopy were applied to compare the structure of kapundaite with wardite. The Raman spectrum of kapundaite in the 800–1400 cm−1 spectral range shows two intense bands at 1089 and 1114 cm−1 assigned to the ν1PO43- symmetric stretching vibrations. The observation of two bands provides evidence for the non-equivalence of the phosphate units in the kapundaite structure. The infrared spectrum of kapundaite in the 500–1300 cm−1 shows much greater complexity than the Raman spectrum. Strong infrared bands are found at 966, 1003 and 1036 cm−1 and are attributed to the ν1PO43- symmetric stretching mode and ν3PO43- antisymmetric stretching mode. Raman bands in the ν4 out of plane bending modes of the PO43- unit support the concept of non-equivalent phosphate units in the kapundaite structure. In the 2600–3800 cm−1 spectral range, Raman bands for kapundaite are found at 2905, 3151, 3311, 3449 and 3530 cm−1. These bands are broad and are assigned to OH stretching vibrations. Broad infrared bands are also found at 2904, 3105, 3307, 3453 and 3523 cm−1 and are attributed to water. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of kapundaite to be ascertained and compared with that of other phosphate minerals.
Resumo:
A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the monocyclic heteroaromatic carboxylic acids, isonicotinic acid, picolinic acid, dipicolinic acid and pyrazine-2,3-dicarboxylic acid have been determined at 200 K and their hydrogen-bonding patterns examined. The compounds are respectively anhydrous 4-carbamoylpiperidinium pyridine-4-carboxylate (1), the partial hydrate 4-carbamoylpiperidinium pyridine-2-carboxylate 0.25 water (2), the solvate 4-carbamoylpiperidinium 6-carboxypyridine-2-carboxylate methanol monosolvate (3), and anhydrous 4-carbamoylpiperidinium 3-carboxypyrazine-2-carboxylate (4). In compounds 1 and 3, hydrogen-bonding interactions give two-dimensional sheet structures which feature enlarged cyclic ring systems, while in compounds 2 and 4, three-dimensional structures are found. The previously described cyclic R2/2(8) hydrogen-bonded amide-amide dimer is present in 2 and 3. The hydrogen-bonding in 2 involves the partial-occupancy water molecule while the structure of 4 is based on inter-linked homomolecular hydrogen-bonded cation-cation and anion-anion associated chains comprising head-to-tail interactions. This work further demonstrates the utility of the isonipecotamide cation in the generation of chemically stable hydrogen-bonded systems, particularly with aromatic carboxylate anions, providing crystalline solids.
Resumo:
The synthesis and characterization of solution processable donor-acceptor-donor (D-A-D) based conjugated molecules with varying ratios of thiophene as donor (D) and benzothiadiazole as acceptor (A) are reported. Optical, electrochemical, thermal, morphological and organic thin film transistor (OTFT) device properties of these materials were investigated. The thermal and polarized optical microscope analysis indicates that the materials having higher D/A ratios exhibit both liquid crystalline (LC) and OTFT behavior. AFM analysis of the materials having D/A ratios of 3 and 4 (3T1B and 4T1B) show well ordered structures, resulting from strong π-π interchain interactions compared to the other molecules in this study. A XRD patterns for 3T1B and 4T1B thin films also shows high crystalline ordering. Solution processed OTFTs of 3T1B and 4T1B have shown un-optimized charge carrier mobilities of 2 × 10 -2 cm 2 V -1 s -1 and 4 × 10 -3 cm 2 V -1 s -1, respectively on bare Si/SiO 2 substrate.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the monocyclic heteroaromatic Lewis bases 2-aminopyrimidine, 3-(aminocarboxy) pyridine (nicotinamide) and 4-(aminocarbonyl) pyridine (isonicotinamide), namely 2-aminopyrimidinium 2-carboxy-4,5-dichlorobenzoate C4H6N3+ C8H3Cl2O4- (I), 3-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate C6H7N2O+ C8H3Cl2O4- (II) and the unusual salt adduct 4-(aminocarbonyl) pyridinium 2-carboxy-4,5-dichlorobenzoate 2-carboxymethyl-4,5-dichlorobenzoic acid (1/1/1) C6H7N2O+ C8H3Cl2O4-.C9H6Cl2O4 (III) have been determined at 130 K. Compound (I) forms discrete centrosymmetric hydrogen-bonded cyclic bis(cation--anion) units having both R2/2(8) and R2/1(4) N-H...O interactions. In compound (II) the primary N-H...O linked cation--anion units are extended into a two-dimensional sheet structure via amide-carboxyl and amide-carbonyl N-H...O interactions. The structure of (III) reveals the presence of an unusual and unexpected self-synthesized methyl monoester of the acid as an adduct molecule giving one-dimensional hydrogen-bonded chains. In all three structures the hydrogen phthalate anions are
Resumo:
The asymmetric unit of the title co-crystalline 1:2 adduct C12H12N2O2 . 2(C6H3N3O6) contains two independent molecules of bis(4-aminophenyl)sulfone (the drug Dapsone) and four molecules of 1,3,5-trinitrobenzene and is extended into a two-dimensional hydrogen-bonded network structure through amino N-H...O hydrogen-bonding associations with nitro O- atom acceptors. In the two independent Dapsone molecules the inter-ring dihedral angles are 69.0(2) and 63.59(11)deg. Aromatic pi-pi interactions are also found between one of the Dapsone aromatic rings and a trinitrobenzene ring [minimum ring centroid separation 3.576(5)Ang.]. A 4-aminophenyl ring moiety of one of the Dapsone molecules and two nitro groups of a trinitrobenzene are disordered in a 50:50 ratio.
Resumo:
The anhydrous salts of 1H-indole-3-ethanamine (tryptamine) with isomeric (2,4-dichlorophenoxy)acetic acid (2,4-D) and (3,5-dichlorophenoxy)acetic (3,5-D), C10H13N2+ (C8H5Cl2O3)-, [(I) and (II), respectively] have been determined and their one-dimensional hydrogen-bonded polymeric structures are described. In the crystal of (I),the aminium H-atoms are involved in three separate inter-species N-H...O hydrogen-bonding interactions, two with carboxyl O-atom acceptors and the third in an asymmetric three-centre bidentate carboxyl O,O' chelate [graph set R2/1(4)]. The indole H-atom forms an N-H...O~carboxyl~ hydrogen bond, extending the chain structure along the b axial direction. In (II), two of the three aminium H-atoms are also involved in N-H...O(carboxyl) hydrogen bonds similar to (I) but with the third, a three-centre asymmetric interaction with carboxyl and phenoxy O-atoms is found [graph set R2/1(5)]. The chain polymeric extension is also along b. There are no pi--pi ring interactions in either of the structures. The aminium side chain conformations differ significantly between the two structures, reflecting the conformational ambivalence of the tryptaminium cation, as found also in the benzoate salts.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of 4,5-dichlorophthalic acid with the aliphatic Lewis bases diisopropylamine and hexamethylenetetramine, viz. diisopropylaminium 2-carboxy-4,5-dichlorobenzoate (1) and hexamethylenetetraminium 2-carboxy-4,5-dichlorobenzoate hemihydrate (2), have been determined. Crystals of both 1 and 2 are triclinic, space group P-1, with Z = 2 in cells with a = 7.0299(5), b = 9.4712(7), c = 12.790(1)Å, α = 99.476(6), β = 100.843(6), γ = 97.578(6)o (1) and a = 7.5624(8), b = 9.8918(8), c = 11.5881(16)Å, α = 65.660(6), β = 86.583(4), γ = 86.987(8)o (2). In each, one-dimensional hydrogen-bonded chain structures are found: in 1 formed through aminium N+-H...Ocarboxyl cation-anion interactions. In 2, the chains are formed through anion carboxyl O...H-Obridging water interactions with the cations peripherally bound. In both structures, the hydrogen phthalate anions are essentially planar with short intra-species carboxylic acid O-H...Ocarboxyl hydrogen bonds [O…O, 2.381(3) Å (1) and 2.381(8) Å (2)].
Resumo:
The 1:1 proton-transfer compound of the potent substituted amphetamine hallucinogen (R)-1-(8-bromobenzo[1,2-b; 4,5-b']difuran-4-yl)-2-aminopropane (common trivial name 'bromodragonfly') with 3,5-dinitrosalicylic acid, 1-(8-bromobenzo[1,2-b;4,5-b']difuran-4-yl)-2-mmoniopropane 2-carboxy-4,6-dinitrophenolate, C13H13BrNO2+ C7H3N2O7- forms hydrogen-bonded cation-anion chain substructures comprising undulating head-to-tail anion chains formed through C(8) carboxyl O-H...O(nitro) associations and incorporating the aminium groups of the cations. The intra-chain cation-anion hydrogen-bonding associations feature proximal cyclic R33(8) interactions involving both a N+-H...O(phenolate) and the carboxyl O--H...O(nitro)associations. Also present are aromatic pi-pi ring interactions [minimum ring centroid separation, 3.566(2)A; inter-plane dihedral angle, 5.13(1)deg]. A lateral hydrogen-bonding interaction between the third aminium proton and a carboxyl O acceptor link the chain substructures giving a two-dimensional sheet structure. This determination represents the first of any form of this compound and confirms that it has the (R) absolute configuration. The atypical crystal stability is attributed both to the hydrogen-bonded chain substructures provided by the anions, which accommodate the aminium proton-donor groups of the cations and give cross-linking, and to the presence of cation--anion aromatic ring pi-pi interactions.
Resumo:
The structures of proton-transfer compounds of 4,5-dichlorophthalic acid (DCPA) with the aliphatic Lewis bases triethylamine, diethylamine, n-butylamine and piperidine, namely triethylaminium 2-carboxy-4,5-dichlorobenzoate C~6~H~16~N^+^ C~8~H~3~Cl~2~O~4~^-^ (I), diethylaminium 2-carboxy-4,5-dichlorobenzoate C~4~H~12~N^+^ C~8~H~3~Cl~2~O~4~^-^ (II), bis(n-butylaminium) 4,5-dichlorophthalate monohydrate 2(C~4~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (III) and bis(piperidinium) 4,5-dichlorophthalate monohydrate 2(C~5~H~12~N^+^) C~8~H~2~Cl~2~O~4~^2-^ . H~2~O (IV)have been determined at 200 K. All compounds have hydrogen-bonding associations giving in (I) discrete cation-anion units, linear chains in (II) while (III) and (IV) both have two-dimensional structures. In (I) a discrete cation-anion unit is formed through an asymmetric R2/1(4) N+-H...O,O' hydrogen-bonding association whereas in (II), one-dimensional chains are formed through linear N-H...O associations by both aminium H donors. In compounds (III) and (IV) the primary N-H...O linked cation-anion units are extended into a two-dimensional sheet structure via amide N-H...O(carboxyl) and ...O(carbonyl) interactions. In the 1:1 salts [(I) and (II)], the hydrogen 4,5-dichlorophthalate anions are essentially planar with short intramolecular carboxylic acid O-H...O(carboxyl) hydrogen bonds [O...O, 2.4223(14) and 2.388(2)A respectively]. This work provides a further example of the uncommon zero-dimensional hydrogen-bonded DCPA-Lewis base salt and the one-dimensional chain structure type, while even with the hydrate structures of the 1:2 salts with the primary and secondary amines, the low dimensionality generally associated with 1:1 DCPA salts is also found.
Resumo:
In the title co-crystalline adduct of the drug Dapsone with 3,5-dinitrobenzoic acid, C~12~H~12~N~2~O~2~S . C~7~H~4~N~4~O~6~, the dihedral angle between the two aromatic rings of the Dapsone molecule is 75.4(2)deg. and those between these rings and that of the 3,5-dinitrobenzoic acid are 64.5(2) and 68.4(2)deg. A strong inter-species carboxylic acid O-H---N(amine) hydrogen-bond is found, which together with intermolecular amine N-H...O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors as well as weak pi-pi interactions between one of the Dapsone phenyl rings and the 3,5-dinitrobenzoic acid ring [minimum ring centroid separation 3.774(2)Ang.], give a two-dimensional network structure.