70 resultados para 399
Resumo:
Responding to the individual needs of the person affected by cancer is a fundamental tenet of nursing care. The evidence base to enable highly personalized approaches to the way we provide care has grown enormously in recent years. Today, we have a much better understanding of the mechanisms underpinning health needs of people with cancer, as well as the wide range of environmental, sociocultural, psychological, and biological influences on these needs. This growing evidence base enables us to better target and tailor interventions in increasingly sophisticated ways.
Resumo:
This chapter discusses a ‘writing movement’, which is currently occurring in various parts of Australia through the support of social media. A concept emerging from the café scene in San Francisco, ‘Shut Up and Write!’ is a meetup group that brings writers together at a specific time and place to write side by side, thus making writing practice, social. This concept has been applied to the academic environment and our case-study explores the positive outcomes in two locations: RMIT University and Queensland University of Technology. This informal learning practice can be implemented to assist research students in developing academic skills.
Resumo:
The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.
Resumo:
Nitrogen balance is increasingly used as an indicator of the environmental performance of agricultural sector in national, international, and global contexts. There are three main methods of accounting the national nitrogen balance: farm gate, soil surface, and soil system. OECD (2008) recently reported the nitrogen and phosphorus balances for member countries for the 1985 - 2004 period using the soil surface method. The farm gate and soil system methods were also used in some international projects. Some studies have provided the comparison among these methods and the conclusion is mixed. The motivation of this present paper was to combine these three methods to provide a more detailed auditing of the nitrogen balance and flows for national agricultural production. In addition, the present paper also provided a new strategy of using reliable international and national data sources to calculate nitrogen balance using the farm gate method. The empirical study focused on the nitrogen balance of OECD countries for the period from 1985 to 2003. The N surplus sent to the total environment of OECD surged dramatically in early 1980s, gradually decreased during 1990s but exhibited an increasing trends in early 2000s. The overall N efficiency however fluctuated without a clear increasing trend. The eco-environmental ranking shows that Australia and Ireland were the worst while Korea and Greece were the best.
Resumo:
The presence of arsenic in the environment is a hazard. The accumulation of arsenate by a range of cations in the formation of minerals provides a mechanism for the remediation of arsenate contamination. The formation of the crandallite group of minerals provides a mechanism for arsenate accumulation. Among the crandallite minerals are philipsbornite, arsenocrandallite and arsenogoyazite. Raman spectroscopy complimented with infrared spectroscopy has enabled aspects of the structure of philipsbornite to be studied. The Raman spectrum of philipsbornite displays an intense band at around 840 cm−1 attributed to the overlap of the symmetric and antisymmetric stretching modes. Raman bands observed at 325, 336, 347, 357, 376 and 399 cm−1 are assigned to the ν2 (AsO4)3− symmetric bending vibration (E) and to the ν4 bending vibration (F2). The observation of multiple bending modes supports the concept of a reduction in symmetry of the arsenate anion in philipsbornite. Evidence for phosphate in the mineral is provided. By using an empirical formula, hydrogen bond distances for the OH units in philipsbornite of 2.8648 Å, 2.7864 Å, 2.6896 Å cm−1 and 2.6220 were calculated.
Resumo:
Identity-Based (IB) cryptography is a rapidly emerging approach to public-key cryptography that does not require principals to pre-compute key pairs and obtain certificates for their public keys— instead, public keys can be arbitrary identifiers such as email addresses, while private keys are derived at any time by a trusted private key generator upon request by the designated principals. Despite the flurry of recent results on IB encryption and signature, some questions regarding the security and efficiency of practicing IB encryption (IBE) and signature (IBS) as a joint IB signature/encryption (IBSE) scheme with a common set of parameters and keys, remain unanswered. We first propose a stringent security model for IBSE schemes. We require the usual strong security properties of: (for confidentiality) indistinguishability against adaptive chosen-ciphertext attacks, and (for nonrepudiation) existential unforgeability against chosen-message insider attacks. In addition, to ensure as strong as possible ciphertext armoring, we also ask (for anonymity) that authorship not be transmitted in the clear, and (for unlinkability) that it remain unverifiable by anyone except (for authentication) by the legitimate recipient alone. We then present an efficient IBSE construction, based on bilinear pairings, that satisfies all these security requirements, and yet is as compact as pairing-based IBE and IBS in isolation. Our scheme is secure, compact, fast and practical, offers detachable signatures, and supports multirecipient encryption with signature sharing for maximum scalability.
Resumo:
ABSTRACT Objective: Ureaplasma parvum colonization in the setting of polymicrobial flora is common in women with chorioamnionitis, and is a risk factor for preterm delivery and neonatal morbidity. We hypothesized that ureaplasma colonization of amniotic fluid will modulate chorioamnionitis induced by E.coli lipopolysaccharide (LPS). Methods: Sheep received intra-amniotic (IA) injections of media (control) or live ureaplasma either 7 or 70d before delivery. Another group received IA LPS 2d before delivery. To test for interactions, U.parvum exposed animals were challenged with IA LPS, and delivered 2d later. All animals were delivered preterm at 125±1 day gestation. Results: Both IA ureaplasmas and LPS induced leukocyte infiltration of chorioamnion. LPS greatly increased the expression of pro-inflammatory cytokines and myeloperoxidase in leukocytes, while ureaplasmas alone caused modest responses. Interestingly, 7d but not 70d ureaplasma exposure significantly downregulated LPS induced pro-inflammatory cytokines and myeloperoxidase expression in the chorioamnion. Conclusion: U.parvum can suppress LPS induced experimental chorioamnionitis.
Resumo:
An onboard payload may be seen in most instances as the “Raison d’Etre” for a UAV. It will define its capabilities, usability and hence market value. Large and medium UAV payloads exhibit significant differences in size and computing capability when compared with small UAVs. The latter have stringent size, weight, and power requirements, typically referred as SWaP, while the former still exhibit endless appetite for compute capability. The tendency for this type of UAVs (Global Hawk, Hunter, Fire Scout, etc.) is to increase payload density and hence processing capability. An example of this approach is the Northrop Grumman MQ-8 Fire Scout helicopter, which has a modular payload architecture that incorporates off-the-shelf components. Regardless of the UAV size and capabilities, advances in miniaturization of electronics are enabling the replacement of multiprocessing, power-hungry general-purpose processors for more integrated and compact electronics (e.g., FPGAs). Payloads play a significant role in the quality of ISR (intelligent, surveillance, and reconnaissance) data, and also in how quick that information can be delivered to the end user. At a high level, payloads are important enablers of greater mission autonomy, which is the ultimate aim in every UAV. This section describes common payload sensors and introduces two examples cases in which onboard payloads were used to solve real-world problems. A collision avoidance payload based on electro optical (EO) sensors is first introduced, followed by a remote sensing application for power line inspection and vegetation management.
Resumo:
The mineral amarantite Fe23+(SO4)O∙7H2O has been studied using a combination of techniques including thermogravimetry, electron probe analyses and vibrational spectroscopy. Thermal analysis shows decomposition steps at 77.63, 192.2, 550 and 641.4°C. The Raman spectrum of amarantite is dominated by an intense band at 1017 cm-1 assigned to the SO42- ν1 symmetric stretching mode. Raman bands at 1039, 1054, 1098, 1131, 1195 and 1233 cm-1 are attributed to the SO42- ν3 antisymmetric stretching modes. Very intense Raman band is observed at 409 cm-1 with shoulder bands at 399, 451 and 491 cm-1 are assigned to the v2 bending modes. A series of low intensity Raman bands are found at 543, 602, 622 and 650 cm-1 are assigned to the v4 bending modes. A very sharp Raman band at 3529 cm-1 is assigned to the stretching vibration of OH units. A series of Raman bands observed at 3025, 3089, 3227, 3340, 3401 and 3480 cm-1 are assigned to water bands. Vibrational spectroscopy enables aspects of the molecular structure of the mineral amarantite to be ascertained.
Resumo:
Background: Side effects of the medications used for procedural sedation and analgesia in the cardiac catheterisation laboratory are known to cause impaired respiratory function. Impaired respiratory function poses considerable risk to patient safety as it can lead to inadequate oxygenation. Having knowledge about the conditions that predict impaired respiratory function prior to the procedure would enable nurses to identify at-risk patients and selectively implement intensive respiratory monitoring. This would reduce the possibility of inadequate oxygenation occurring. Aim: To identify pre-procedure risk factors for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Design: Retrospective matched case–control. Methods: 21 cases of impaired respiratory function were identified and matched to 113 controls from a consecutive cohort of patients over 18 years of age. Conditional logistic regression was used to identify risk factors for impaired respiratory function. Results: With each additional indicator of acute illness, case patients were nearly two times more likely than their controls to experience impaired respiratory function (OR 1.78; 95% CI 1.19–2.67; p = 0.005). Indicators of acute illness included emergency admission, being transferred from a critical care unit for the procedure or requiring respiratory or haemodynamic support in the lead up to the procedure. Conclusion: Several factors that predict the likelihood of impaired respiratory function were identified. The results from this study could be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory.
Resumo:
Modernized GPS and GLONASS, together with new GNSS systems, BeiDou and Galileo, offer code and phase ranging signals in three or more carriers. Traditionally, dual-frequency code and/or phase GPS measurements are linearly combined to eliminate effects of ionosphere delays in various positioning and analysis. This typical treatment method has imitations in processing signals at three or more frequencies from more than one system and can be hardly adapted itself to cope with the booming of various receivers with a broad variety of singles. In this contribution, a generalized-positioning model that the navigation system independent and the carrier number unrelated is promoted, which is suitable for both single- and multi-sites data processing. For the synchronization of different signals, uncalibrated signal delays (USD) are more generally defined to compensate the signal specific offsets in code and phase signals respectively. In addition, the ionospheric delays are included in the parameterization with an elaborate consideration. Based on the analysis of the algebraic structures, this generalized-positioning model is further refined with a set of proper constrains to regularize the datum deficiency of the observation equation system. With this new model, uncalibrated signal delays (USD) and ionospheric delays are derived for both GPS and BeiDou with a large dada set. Numerical results demonstrate that, with a limited number of stations, the uncalibrated code delays (UCD) are determinate to a precision of about 0.1 ns for GPS and 0.4 ns for BeiDou signals, while the uncalibrated phase delays (UPD) for L1 and L2 are generated with 37 stations evenly distributed in China for GPS with a consistency of about 0.3 cycle. Extra experiments concerning the performance of this novel model in point positioning with mixed-frequencies of mixed-constellations is analyzed, in which the USD parameters are fixed with our generated values. The results are evaluated in terms of both positioning accuracy and convergence time.
Resumo:
Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
Resumo:
People's decision to join an organ donor registry and have a discussion with family about their organ donation preference increases the likelihood that their family will consent to donation of their organs. This study explores the effectiveness of three interventions compared to a control condition to increase individual consent (registering and discussing donation wishes) for organ donation. Australian residents who had not previously communicated their consent (N = 177) were randomly allocated to complete an online survey representing either an extended theory of planned behaviour motivational intervention (strengthening intention via attitudes, subjective norms, control, moral norms and identity), a volitional intervention using constructs from the health action process approach (strengthening the translation of intentions into action using action plans and coping plans), a combined motivational and volitional intervention, or a control condition. Registering, but not discussing, intentions increased in the motivational compared to non-motivational conditions. For joining the organ donor registry, the combination of strengthening intentions (motivational) as well as forming specific action (when, where, how, and with whom for discussing) and coping (listing potential obstacles and how these may be overcome) plans (volitional) resulted in significantly higher rates of self-reported behaviour. There was no evidence for this effect on discussion.
Resumo:
Evidence-based practice in entrepreneurship requires effective communication of research findings. We focus on how research synopses can “promote” research to entrepreneurs. Drawing on marketing communications literature, we examine how message characteristics of research synopses affect their appeal. We demonstrate the utility of conjoint analysis in this context and find message length, media richness and source credibility to have positive influences. We find mixed support for a hypothesized negative influence of jargon, and for our predictions that participants’ involvement with academic research moderates these effects. Exploratory analyses reveal latent classes of entrepreneurs with differing preferences, particularly for message length and jargon.
Resumo:
Melanoma has historically been refractive to traditional therapeutic approaches. As such, the development of novel drug strategies has been needed to improve rates of overall survival in patients with melanoma, particularly those with late stage or disseminated disease. Recent success with molecularly based targeted drugs, such as Vemurafenib in BRAF-mutant melanomas, has now made “personalized medicine” a reality within some oncology clinics. In this sense, tailored drugs can be administered to patients according to their tumor “mutation profiles.” The success of these drug strategies, in part, can be attributed to the identification of the genetic mechanisms responsible for the development and progression of metastatic melanoma. Recently, the advances in sequencing technology have allowed for comprehensive mutation analysis of tumors and have led to the identification of a number of genes involved in the etiology of metastatic melanoma. As the methodology and costs associated with next-generation sequencing continue to improve, this technology will be rapidly adopted into routine clinical oncology practices and will significantly impact on personalized therapy. This review summarizes current and emerging molecular targets in metastatic melanoma, discusses the potential application of next-generation sequencing within the paradigm of personalized medicine, and describes the current limitations for the adoption of this technology within the clinic.