142 resultados para 090108 Satellite Space Vehicle and Missile Design and Testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design activities of the development of the SCRAMSPACE I scramjet-powered free-flight experiment are described in this paper. The objectives of this flight are first described together with the definition of the primary, secondary and tertiary experiments. The Scramjet configuration studied is first discussed together with the rocket motor system selected for this flight. The different flight sequences are then explained, highlighting the SCRAMSPACE I free-flyer separation and re-orientation procedures. A design trade-off study is then described considering vehicle stability, packaging, thermo-structural analysis and trajectory, discussing the alignment of the predicted performance with the mission scientific requirements. The global system architecture and instrumentation of the vehicle are then explained. The conclusions of this design phase are that a vehicle design has been produced which is able to meet the mission scientific goals and the procurement & construction of the vehicle are ongoing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environments that we inhabit shape our everyday lives, influencing our behaviors and responses (Manu, 2013). As we enter an immersive phase of education in which physical and digital environments become inseparable, should we reconsider the role and importance of design on pedagogical practice? This paper explores the reciprocal cause and effect of space, technology and pedagogy in shaping the design of educational experiences within Queensland University of Technology's collaborative learning spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social and psychological theories have provided a plethora of evidence showing that the physical difficulty to express appropriate social interactions between drivers expresses itself in aggression, selfish driving and anti-social behaviour. Therefore there is a need to improve interactions between drivers and allow clearer collective decision making between them. Personal characteristics and the driving situations play strong roles in driver’s aggression. Our approach is centered around the driving situation as opposed to focusing on personality characteristics. It examines aggression and manipulates contextual variables such as driver’s eye contact exchanges. This paper presents a new unobtrusive in-vehicle system that aims at communicating drivers’ intentions, elicit social responses and increasing mutual awareness. It uses eye gaze as a social cue to affect collective decision making with the view to contribute to safe driving. The authors used a driving simulator to design a case control experiment in which eye gaze movements are conveyed with an avatar. Participants were asked to drive through different types of intersections. An avatar representing the head of the other driver was displayed and driver behaviour was analysed. Significant eye gaze pattern difference where observed when an avatar was displayed. Drivers cautiously refer to the avatar when information is required on the intention of others (e.g. when they do not have the right of way). The majority of participants reported the perception of “being looked at”. The number of glances and time spent gazing at the avatar did not indicate an unsafe distraction by standards of in-vehicle device ergonomic design. Avatars were visually consulted primarily in less demanding driving situations, which underlines their non-distractive nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states—perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of “excess” zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to “excess” zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed—and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harmful Algal Blooms (HABs) have become an important environmental concern along the western coast of the United States. Toxic and noxious blooms adversely impact the economies of coastal communities in the region, pose risks to human health, and cause mortality events that have resulted in the deaths of thousands of fish, marine mammals and seabirds. One goal of field-based research efforts on this topic is the development of predictive models of HABs that would enable rapid response, mitigation and ultimately prevention of these events. In turn, these objectives are predicated on understanding the environmental conditions that stimulate these transient phenomena. An embedded sensor network (Fig. 1), under development in the San Pedro Shelf region off the Southern California coast, is providing tools for acquiring chemical, physical and biological data at high temporal and spatial resolution to help document the emergence and persistence of HAB events, supporting the design and testing of predictive models, and providing contextual information for experimental studies designed to reveal the environmental conditions promoting HABs. The sensor platforms contained within this network include pier-based sensor arrays, ocean moorings, HF radar stations, along with mobile sensor nodes in the form of surface and subsurface autonomous vehicles. FreewaveTM radio modems facilitate network communication and form a minimally-intrusive, wireless communication infrastructure throughout the Southern California coastal region, allowing rapid and cost-effective data transfer. An emerging focus of this project is the incorporation of a predictive ocean model that assimilates near-real time, in situ data from deployed Autonomous Underwater Vehicles (AUVs). The model then assimilates the data to increase the skill of both nowcasts and forecasts, thus providing insight into bloom initiation as well as the movement of blooms or other oceanic features of interest (e.g., thermoclines, fronts, river discharge, etc.). From these predictions, deployed mobile sensors can be tasked to track a designated feature. This focus has led to the creation of a technology chain in which algorithms are being implemented for the innovative trajectory design for AUVs. Such intelligent mission planning is required to maneuver a vehicle to precise depths and locations that are the sites of active blooms, or physical/chemical features that might be sources of bloom initiation or persistence. The embedded network yields high-resolution, temporal and spatial measurements of pertinent environmental parameters and resulting biology (see Fig. 1). Supplementing this with ocean current information and remotely sensed imagery and meteorological data, we obtain a comprehensive foundation for developing a fundamental understanding of HAB events. This then directs labor- intensive and costly sampling efforts and analyses. Additionally, we provide coastal municipalities, managers and state agencies with detailed information to aid their efforts in providing responsible environmental stewardship of their coastal waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vietnam has a unique culture which is revealed in the way that people have built and designed their traditional housing. Vietnamese dwellings reflect occupants’ activities in their everyday lives, while adapting to tropical climatic conditions impacted by seasoning monsoons. It is said that these characteristics of Vietnamese dwellings have remained unchanged until the economic reform in 1986, when Vietnam experienced an accelerated development based on the market-oriented economy. New housing types, including modern shop-houses, detached houses, and apartments, have been designed in many places, especially satisfying dwellers’ new lifestyles in Vietnamese cities. The contemporary housing, which has been mostly designed by architects, has reflected rules of spatial organisation so that occupants’ social activities are carried out. However, contemporary housing spaces seem unsustainable in relation to socio-cultural values because they has been influenced by globalism that advocates the use of homogeneous spatial patterns, modern technologies, materials and construction methods. This study investigates the rules of spaces in Vietnamese houses that were built before and after the reform to define the socio-cultural implications in Vietnamese housing design. Firstly, it describes occupants’ views of their current dwellings in terms of indoor comfort conditions and social activities in spaces. Then, it examines the use of spaces in pre-reform Vietnamese housing through occupants’ activities and material applications. Finally, it discusses the organisation of spaces in both pre- and post-reform housing to understand how Vietnamese housing has been designed for occupants to live, act, work, and conduct traditional activities. Understanding spatial organisation is a way to identify characteristics of the lived spaces of the occupants created from the conceived space, which is designed by designers. The characteristics of the housing spaces will inform the designers the way to design future Vietnamese housing in response to cultural contexts. The study applied an abductive approach for the investigation of housing spaces. It used a conceptual framework in relation to Henri Lefebvre’s (1991) theory to understand space as the main factor constituting the language of design, and the principles of semiotics to examine spatial structure in housing as a language used in the everyday life. The study involved a door-knocking survey to 350 households in four regional cities of Vietnam for interpretation of occupancy conditions and levels of occupants’ comfort. A statistical analysis was applied to interpret the survey data. The study also required a process of data selection and collection of fourteen cases of housing in three main climatic regions of the country for analysing spatial organisation and housing characteristics. The study found that there has been a shift in the relationship of spaces from the pre- to post-reform Vietnamese housing. It also indentified that the space for guest welcoming and family activity has been the central space of the Vietnamese housing. Based on the relationships of the central space with the others, theoretical models were proposed for three types of contemporary Vietnamese housing. The models will be significant in adapting to Vietnamese conditions to achieve socioenvironmental characteristics for housing design because it was developed from the occupants’ requirements for their social activities. Another contribution of the study is the use of methodological concepts to understand the language of living spaces. Further work will be needed to test future Vietnamese housing designs from the applications of the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerial Vehicles (UAV) has become a significant growing segment of the global aviation industry. These vehicles are developed with the intention of operating in regions where the presence of onboard human pilots is either too risky or unnecessary. Their popularity with both the military and civilian sectors have seen the use of UAVs in a diverse range of applications, from reconnaissance and surveillance tasks for the military, to civilian uses such as aid relief and monitoring tasks. Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. This paper presents the development of a parallel Hybrid Electric Propulsion System (HEPS) on a small fixed-wing UAV incorporating an Ideal Operating Line (IOL) control strategy. A simulation model of an UAV was developed in the MATLAB Simulink environment, utilising the AeroSim Blockset and the in-built Aerosonde UAV block and its parameters. An IOL analysis of an Aerosonde engine was performed, and the most efficient (i.e. provides greatest torque output at the least fuel consumption) points of operation for this engine were determined. Simulation models of the components in a HEPS were designed and constructed in the MATLAB Simulink environment. It was demonstrated through simulation that an UAV with the current HEPS configuration was capable of achieving a fuel saving of 6.5%, compared to the ICE-only configuration. These components form the basis for the development of a complete simulation model of a Hybrid-Electric UAV (HEUAV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the body, time and space are fundamental to human experience, comparatively little attention has been given to the connections between them. Here scholars from a wide range of disciplines explore important themes of embodied life in time and space across cultures, activities and bodymind states. Motivated by a common desire to deepen and extend our comprehension of these phenomena and the connections and conversations between them, this book emerged from intense inter-disciplinary dialogue during the 1st Global Conferences on Time, Space and the Body and Body Horror. A plenitude of theoretical approaches and media are deployed to investigate assumptions and pose problems, to creatively deconstruct and reconstruct the terms through which experience is rendered meaningful, pleasurable, and functional. These investigations, pursued through various research methods in fields of the arts, social and psychological sciences and humanities, invite readers into a genuinely pluralistic conversation around the most basic and profound aspects of being.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roundabouts reduce the frequency and severity of motor vehicle crashes and therefore the number installed has increased dramatically in the last 20 years in many countries. However, the safety impacts of roundabouts for bicycle riders are a source of concern, with many studies reporting lower injury reductions for cyclists than car occupants. This paper summarises the results of a project undertaken to provide guidance on how cyclist safety could be improved at existing roundabouts in Queensland, Australia, where cyclist crashes have been increasing and legislation gives motor vehicles priority over cyclists and pedestrians at roundabouts. The review of international roundabout design guidelines identified two schools of design: tangential roundabouts (common in English-speaking countries, including Australia), which focus on minimising delay to motor vehicles, and radial roundabouts (common in continental Europe), which focus on speed reduction and safety. While it might be expected that radial roundabouts would be safer for cyclists, there have been no studies to confirm this view. Most guidelines expect cyclists to act as vehicle traffic in single-lane, typically low-speed, roundabouts. Some jurisdictions do not permit cyclists to travel on multi-lane roundabouts, and recommend segregated bicycle facilities because of their lowest crash risk for cyclists. Given that most bicycle-vehicle crashes at roundabouts involve an entering vehicle and a circulating cyclist, the greatest challenges appear to be reducing the speed of motor vehicles on the approach/entry to roundabouts and other ways of maximizing the likelihood that cyclists will be seen. Lower entry speeds are likely to underpin the greater safety of compact roundabouts for cyclists and, conversely, the higher than expected crash rates at two-lane roundabouts. European research discourages the use of bike lanes in roundabouts which position cyclists at the edge of the road and contributes to cyclists being less likely to be noticed by drivers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper details the initial design and planning of a Field Programmable Gate Array (FPGA) implemented control system that will enable a path planner to interact with a MAVLink based flight computer. The design is aimed at small Unmanned Aircraft Vehicles (UAV) under autonomous operation which are typically subject to constraints arising from limited on-board processing capabilities, power and size. An FPGA implementation for the de- sign is chosen for its potential to address such limitations through low power and high speed in-hardware computation. The MAVLink protocol offers a low bandwidth interface for the FPGA implemented path planner to communicate with an on-board flight computer. A control system plan is presented that is capable of accepting a string of GPS waypoints generated on-board from a previously developed in- hardware Genetic Algorithm (GA) path planner and feeding them to the open source PX4 autopilot, while simultaneously respond- ing with flight status information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At Purdue University, the Libraries participate in a provost-initiated, campus-wide course redesign program called Instruction Matters: Purdue Academic Course Transformation (IMPACT). This initiative aims to bring active-learning to foundational courses traditionally taught through lectures. Purdue librarians recognized the IMPACT initiative as one way to enter the conversations blooming on our campus about the nature of learning, curriculum design, and how space design impacts potential learning. This article presents three perspectives: 1) the information literacy coordinator, 2) a libraries’ administrator with a gift for space planning, and; 3) an in-the-trenches liaison to course redesign projects. Each discusses the IMPACT initiative from his or her unique perspective and view of its impact on librarian roles. Collectively, the article explains why we think it is essential that this kind of campus effort is supported by libraries.