40 resultados para 040107 Meteorology
Resumo:
The Surface Ocean Aerosol Production (SOAP) study was undertaken in February/March 2012 in the biologically active waters of the Chatham Rise, NZ. Aerosol hygroscopicity and volatility were examined with a volatility hygroscopicity tandem differential mobility analyser. These observations confirm results from other hygroscopicity-based studies that the dominant fraction of the observed remote marine particles were non-sea salt sulfates. Further observations are required to clarify the influences of seawater composition, meteorology and analysis techniques seasonally across different ocean basins.
Resumo:
In 2012, the Bureau of Meteorology under the banner of the Water Accounting Standards Board released the Australian Water Accounting Standard 1 (AWAS 1). This standard has been in development since 2007 with key milestones being the release of the Preliminary Australian Water Accounting Standard in 2009, and the exposure draft of the Australian Water Accounting Standard in 2010. Throughout this period, the Minerals Council of Australia’s Water Accounting Framework has developed concurrently with the Australian standards and the standards have informed elements of the framework. However, the framework is not identical to the standard as the objectives between the two are different. The objective of the Water Accounting Framework is to create consistency in water reporting of the minerals industry and to assist companies reporting to corporate sustainability initiatives. The objective of AWAS 1 is to provide information to water management bodies to facilitate decisions about the allocation of water resources. Companies are to report on an annual basis, not only physical flows of water but contractual requirements to supply and obtain water, regardless of whether the transaction has been fulfilled in the reporting period. In contrast, the Water Accounting Framework only reports on flows that have physically happened. The paper will provide summary information on aspects of AWAS 1 that are most relevant to the minerals industry, show the alignment and differences between AWAS 1 and the Water Accounting Framework and explain how to obtain the information for the AWAS 1 reporting statements.
Resumo:
Grateful Fateful Sunshine Rain is a permanent public artwork commissioned by Aria Property Group through a competitive process for the Austin apartment building in South Brisbane. Artist Statement: Residents of Brisbane have a complex relationship with weather. As the capital of the Sunshine State, weather is an integral part of the city’s cultural identity. Weather deeply affects the mood of the city – from the excitement of scantily clad partygoers on balmy December evenings and late February’s lethargy, to the deepening anxiety that emerges after 100 days of rain (or more commonly, 100 days without rain). With a brief nod to the city’s – now decommissioned – iconic MCL weather beacon, Grateful Fateful Sunshine Rain taps into this aspect of Brisbane’s psyche with poetic, illuminated visualisations of real-time weather forecasts issued by the Bureau of Meteorology. Each evening, the artwork downloads tomorrow’s forecast from the Bureau of Meteorology website. Data including, current local temperature, humidity, wind speed & direction, precipitation (rain, hail etc), are used to generate a lighting display that conveys how tomorrow will feel. The artwork’s background colour indicates the expected temperature – from cold blues through mild pastel pinks and blues to bright hot oranges and reds. White fluffy clouds roll across the artwork if cloud is predicted. The density of these clouds indicates the level of cover whilst movement indicates expected wind speed and direction. If rain is predicted, sparkles of white light will appear on top of whichever background colour is chosen for the next day’s temperature. Sparkles appear constantly before wet, drizzly days, and intermittently if scattered showers are predicted. Intermittent, but more intense sparkles appear before rain storms or thunderstorms. Research Contribution: The work has made contributions to the field in the way it rethinks approaches to the conceptualization, design and realization of illuminated urban media. This has led to new theorizations of urban media, which consider light and illumination can be used to convey meaningful data. The research has produced new methods for controlling illumination systems using tools and techniques typically employed in computation arts. It has also develop methods and processes for the design and production of illuminated urban media architectures that are connected to real time data sources, and do which not follow the assumed logics of screen based media and displays.
Resumo:
Natural free convection is a process of great importance in disciplines from hydrology to meteorology, oceanography, planetary sciences, and economic geology, and for applications in carbon sequestration and nuclear waste disposal. It has been studied for over a century - but almost exclusively in theoretical and laboratory settings, Despite its importance, conclusive primary evidence of free convection in porous media does not currently exist in a natural field setting. Here, we present recent electrical resistivity measurements from a sabkha aquifer near Abu Dhabi, United Arab Emirates, where large density inversions exist. The geophysical images from this site provide, for the first time, compelling field evidence of fingering associated with natural free convection in groundwater.
Resumo:
Background The impact of socio-environmental factors on suicide has been examined in many studies. Few of them, however, have explored these associations from a spatial perspective, especially in assessing the association between meteorological factors and suicide. This study examined the association of meteorological and socio-demographic factors with suicide across small areas over different time periods. Methods Suicide, population and socio-demographic data (e.g., population of Aboriginal and Torres Strait Islanders (ATSI), and unemployment rate (UNE) at the Local Government Area (LGA) level were obtained from the Australian Bureau of Statistics for the period of 1986 to 2005. Information on meteorological factors (rainfall, temperature and humidity) was supplied by Australian Bureau of Meteorology. A Bayesian Conditional Autoregressive (CAR) Model was applied to explore the association of socio-demographic and meteorological factors with suicide across LGAs. Results In Model I (socio-demographic factors), proportion of ATSI and UNE were positively associated with suicide from 1996 to 2000 (Relative Risk (RR)ATSI = 1.0107, 95% Credible Interval (CI): 1.0062-1.0151; RRUNE = 1.0187, 95% CI: 1.0060-1.0315), and from 2001 to 2005 (RRATSI = 1.0126, 95% CI: 1.0076-1.0176; RRUNE = 1.0198, 95% CI: 1.0041-1.0354). Socio-Economic Index for Area (SEIFA) and IND, however, had negative associations with suicide between 1986 and 1990 (RRSEIFA = 0.9983, 95% CI: 0.9971-0.9995; RRATSI = 0.9914, 95% CI: 0.9848-0.9980). Model II (meteorological factors): a 1°C higher yearly mean temperature across LGAs increased the suicide rate by an average by 2.27% (95% CI: 0.73%, 3.82%) in 1996–2000, and 3.24% (95% CI: 1.26%, 5.21%) in 2001–2005. The associations between socio-demographic factors and suicide in Model III (socio-demographic and meteorological factors) were similar to those in Model I; but, there is no substantive association between climate and suicide in Model III. Conclusions Proportion of Aboriginal and Torres Strait Islanders, unemployment and temperature appeared to be statistically associated with of suicide incidence across LGAs among all selected variables, especially in recent years. The results indicated that socio-demographic factors played more important roles than meteorological factors in the spatial pattern of suicide incidence.
Resumo:
The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol–cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007–2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.
Resumo:
Background Understanding the relationship between extreme weather events and childhood hand, foot and mouth disease (HFMD) is important in the context of climate change. This study aimed to quantify the relationship between extreme precipitation and childhood HFMD in Hefei, China, and further, to explore whether the association varied across urban and rural areas. Methods Daily data on HFMD counts among children aged 0–14 years from 2010 January 1st to 2012 December 31st were retrieved from Hefei Center for Disease Control and Prevention. Daily data on mean temperature, relative humidity and precipitation during the same period were supplied by Hefei Bureau of Meteorology. We used a Poisson linear regression model combined with a distributed lag non-linear model to assess the association between extreme precipitation (≥ 90th precipitation) and childhood HFMD, controlling for mean temperature, humidity, day of week, and long-term trend. Results There was a statistically significant association between extreme precipitation and childhood HFMD. The effect of extreme precipitation on childhood HFMD was the greatest at six days lag, with a 5.12% (95% confident interval: 2.7–7.57%) increase of childhood HFMD for an extreme precipitation event versus no precipitation. Notably, urban children and children aged 0–4 years were particularly vulnerable to the effects of extreme precipitation. Conclusions Our findings indicate that extreme precipitation may increase the incidence of childhood HFMD in Hefei, highlighting the importance of protecting children from forthcoming extreme precipitation, particularly for those who are young and from urban areas.
Resumo:
Introduction: Extreme heat events (both heat waves and extremely hot days) are increasing in frequency and duration globally and cause more deaths in Australia than any other extreme weather event. Numerous studies have demonstrated a link between extreme heat events and an increased risk of morbidity and death. In this study, the researchers sought to identify if extreme heat events in the Tasmanian population were associated with any changes in emergency department admissions to the Royal Hobart Hospital (RHH) for the period 2003-2010. Methods: Non-identifiable RHH emergency department data and climate data from the Australian Bureau of Meteorology were obtained for the period 2003-2010. Statistical analyses were conducted using the computer statistical computer software ‘R’ with a distributed lag non-linear model (DLNM) package used to fit a quassi-Poisson generalised linear regression model. Results: This study showed that RR of admission to RHH during 2003-2010 was significant over temperatures of 24 C with a lag effect lasting 12 days and main effect noted one day after the extreme heat event. Discussion: This study demonstrated that extreme heat events have a significant impact on public hospital admissions. Two limitations were identified: admissions data rather than presentations data were used and further analysis could be done to compare types of admissions and presentations between heat and non-heat events. Conclusion: With the impacts of climate change already being felt in Australia, public health organisations in Tasmania and the rest of Australia need to implement adaptation strategies to enhance resilience to protect the public from the adverse health effects of heat events and climate change.
Resumo:
Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.