450 resultados para network coding
Resumo:
Trimesic acid (TMA) and alcohols were recently shown to self-assemble into a stable, two-component linear pattern at the solution/highly oriented pyrolytic graphite (HOPG) interface. Away from equilibrium, the TMA/alcohol self-assembled molecular network (SAMN) can coexist with pure-TMA networks. Here, we report on some novel characteristics of these non-equilibrium TMA structures, investigated by scanning tunneling microscopy (STM). We observe that both the chicken-wire and flower-structure TMA phases can host 'guest' C60 molecules within their pores, whereas the TMA/alcohol SAMN does not offer any stable adsorption sites for the C60 molecules. The presence of the C60 molecules at the solution/solid interface was found to improve the STM image quality. We have taken advantage of the high-quality imaging conditions to observe unusual TMA bonding geometries at domain boundaries in the TMA/alcohol SAMN. Boundaries between aligned TMA/alcohol domains can give rise to doubled TMA dimer rows in two different configurations, as well as a tripled-TMA row. The boundaries created between non-aligned domains can create geometries that stabilize TMA bonding configurations not observed on surfaces without TMA/alcohol SAMNs, including small regions of the previously predicted 'super flower' TMA bonding geometry and a tertiary structure related to the known TMA phases. These structures are identified as part of a homologic class of TMA bonding motifs, and we explore some of the reasons for the stabilization of these phases in our multicomponent system.
Resumo:
Access to energy is a fundamental component of poverty abatement. People who live in homes without electricity are often dependent on dirty, time-consuming and disproportionately expensive solid fuel sources for heating and cooking. [1] In developing countries, the Human Development Index (HDI), which comprises measures of standard of living, longevity and educational attainment, increases rapidly with per capita electricity use. [2] For these reasons the United Nations has been making a concerted effort to promote global access to energy, first by naming 2012 the Year of Sustainable Energy for All, [3] and now by declaring 2014-2024 the Decade of Sustainable Energy for All. [4]
Resumo:
In this report an artificial neural network (ANN) based automated emergency landing site selection system for unmanned aerial vehicle (UAV) and general aviation (GA) is described. The system aims increase safety of UAV operation by emulating pilot decision making in emergency landing scenarios using an ANN to select a safe landing site from available candidates. The strength of an ANN to model complex input relationships makes it a perfect system to handle the multicriteria decision making (MCDM) process of emergency landing site selection. The ANN operates by identifying the more favorable of two landing sites when provided with an input vector derived from both landing site's parameters, the aircraft's current state and wind measurements. The system consists of a feed forward ANN, a pre-processor class which produces ANN input vectors and a class in charge of creating a ranking of landing site candidates using the ANN. The system was successfully implemented in C++ using the FANN C++ library and ROS. Results obtained from ANN training and simulations using randomly generated landing sites by a site detection simulator data verify the feasibility of an ANN based automated emergency landing site selection system.
Resumo:
Queensland University of Technology (QUT), School of Nursing (SoN), has offered a postgraduate Graduate Certificate in Emergency Nursing since 2003, for registered nurses practising in an emergency clinical area, who fulfil key entry criteria. Feedback from industry partners and students evidenced support for flexible and extended study pathways in emergency nursing. Therefore, in the context of a growing demand for emergency health services and the need for specialist qualified staff, it was timely to review and redevelop our emergency specialist nursing courses. The QUT postgraduate emergency nursing study area is supported by a course advisory group, whose aim is to provide input and focus development of current and future course planning. All members of the course advisory were invited to form an expert panel to review current emergency course documents. A half day “brainstorm session”, planning and development workshop was held to review the emergency courses to implement changes from 2009. Results from the expert panel planning day include: proposal for a new emergency specialty unit; incorporation of the College of Emergency Nurses (CENA) Standards for Emergency Nursing Specialist in clinical assessment; modification of the present core emergency unit; enhancing the focus of the two other units that emergency students undertake; and opening the emergency study area to the Graduate Diploma in Nursing (Emergency Nursing) and Master of Nursing (Emergency Nursing). The conclusion of the brainstorm session resulted in a clearer conceptualisation, of the study pathway for students. Overall, the expert panel group of enthusiastic emergency educators and clinicians provided viable options for extending the career progression opportunities for emergency nurses. In concluding, the opportunity for collaboration across university and clinical settings has resulted in the design of a course with exciting potential and strong clinical relevance.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Resumo:
At present, the most reliable method to obtain end-user perceived quality is through subjective tests. In this paper, the impact of automatic region-of-interest (ROI) coding on perceived quality of mobile video is investigated. The evidence, which is based on perceptual comparison analysis, shows that the coding strategy improves perceptual quality. This is particularly true in low bit rate situations. The ROI detection method used in this paper is based on two approaches: - (1) automatic ROI by analyzing the visual contents automatically, and; - (2) eye-tracking based ROI by aggregating eye-tracking data across many users, used to both evaluate the accuracy of automatic ROI detection and the subjective quality of automatic ROI encoded video. The perceptual comparison analysis is based on subjective assessments with 54 participants, across different content types, screen resolutions, and target bit rates while comparing the two ROI detection methods. The results from the user study demonstrate that ROI-based video encoding has higher perceived quality compared to normal video encoded at a similar bit rate, particularly in the lower bit rate range.
Resumo:
Replacement of deteriorated water pipes is a capital-intensive activity for utility companies. Replacement planning aims to minimize total costs while maintaining a satisfactory level of service and is usually conducted for individual pipes. Scheduling replacement in groups is seen to be a better method and has the potential to provide benefits such as the reduction of maintenance costs and service interruptions. However, developing group replacement schedules is a complex task and often beyond the ability of a human expert, especially when multiple or conflicting objectives need to be catered for, such as minimization of total costs and service interruptions. This paper describes the development of a novel replacement decision optimization model for group scheduling (RDOM-GS), which enables multiple group-scheduling criteria by integrating new cost functions, a service interruption model, and optimization algorithms into a unified procedure. An industry case study demonstrates that RDOM-GS can improve replacement planning significantly and reduce costs and service interruptions.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
This project has investigated how the architecture of the blood vessels supplying nutrients to skeletal muscles is affected by muscle contusion injuries, and how it changes during healing with or without initial treatment of the injury by icing. In order to do this, we used contrast agents to visualise blood vessels in 3D with micro-computed tomography imaging. This research significantly contributes to the fields of orthopaedics, traumatology and sports medicine, as it improves our understanding of muscle contusion injuries. Furthermore, the methods developed in this thesis may help to improve the diagnosis and monitoring of these injuries.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.
Resumo:
WinBUGS code and data to reproduce our network meta-analysis from "Control strategies to prevent total hip replacement-related infections: a systematic review and mixed treatment comparison" published in BMJ Open.
Resumo:
Aurizon, Australia's largest rail freight operator, is introducing the Static Frequency Converter (SFC) technology into its electric railway network as part of the Bauhinia Electrification Project. The introduction of SFCs has significant implications on the protection systems of the 50kV traction network. The traditional distance protection calculation method does not work in this configuration because of the effect that the SFC in combination with the remote grid has on the apparent impedance, and was substantially reviewed. The standard overcurrent (OC) protection scheme is not suitable due to the minimum fault level being below the maximum load level and was revised to incorporate directionality and under-voltage inhibit. Delta protection was reviewed to improve sensitivity. A new protection function was introduced to prevent back-feeding faults in the transmission network through the grid connection. Protection inter-tripping was included to ensure selectivity between the SFC protection and the system downstream.
Resumo:
Distributed renewable energy has become a significant contender in the supply of power in the distribution network in Queensland and throughout the world. As the cost of battery storage falls, distribution utilities turn their attention to the impacts of battery storage and other storage technologies on the low voltage (LV) network. With access to detailed residential energy usage data, Energex's available residential tariffs are investigated for their effectiveness in providing customers with financial incentives to move to Time-of Use based tariffs and to reward use of battery storage.
Resumo:
Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.