436 resultados para mechanical contact


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study, we used the Agilent 8453 spectrophotometer (which is equipped with a limiting aperture that restricts the light beam to the central 5 mm of the contact lens), to measure the transmittance of various coloured contact lenses including the one Day Acuvue define manufactured by Johnson and Johnson which the authors represent. We measured the instrument baseline before the transmittance spectra of lenses were tested. The values of lens transmittances were thus the difference between baseline and lens measurement at each time. The transmittance measurements were obtained at 0.5 nm intervals, from 200 to 700 nm after a soak in saline to remove the influence of any surface active agents within the packaging products. The technique used in our study was not very different from how other research studies [2], [3], [4], [5] and [6] have measured the spectra transmittances of contact lenses...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify regional (nasal, superior, temporal and inferior) and location specific (corneal and scleral) tissue compression following short-term miniscleral contact lens wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissatisfaction with, and discontinuation from, contact lens wear is a source of major frustration and inconvenience to users, and a problem that is thought to cost the contact lens industry hundreds of millions of dollars each year. By directly and non-invasively monitoring inflammatory cells in the tissues at the front of the eye in symptomatic and asymptomatic lens wearers, the candidate has been able to demonstrate an inflammatory basis for contact lens discomfort. This finding may pave the way towards the development of strategies to make contact lenses more safe and afford greater levels of comfort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R2 > 0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89 mg g‒1 and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Western European house mouse, Mus musculus domesticus, is well-known for the high frequency of Robertsonian fusions that have rapidly produced more than 50 karyotipic races, making it an ideal model for studying the mechanisms of chromosomal speciation. The mouse mandible is one of the traits studied most intensively to investigate the effect of Robertsonian fusions on phenotypic variation within and between populations. This complex bone structure has also been widely used to study the level of integration between different morphogenetic units. Here, with the aim of testing the effect of different karyotypic assets on the morphology of the mouse mandible and on its level of modularity, we performed morphometric analyses of mice from a contact area between two highly metacentric races in Central Italy. We found no difference in size, while the mandible shape was found to be different between the two Robertsonian races, even after accounting for the genetic relationships among individuals and geographic proximity. Our results support the existence of two modules that indicate a certain degree of evolutionary independence, but no difference in the strength of modularity between chromosomal races. Moreover, the ascending ramus showed more pronounced interpopulation/race phenotypic differences than the alveolar region, an effect that could be associated to their different polygenic architecture. This study suggests that chromosomal rearrangements play a role in the house mouse phenotypic divergence, and that the two modules of the mouse mandible are differentially affected by environmental factors and genetic makeup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanotubes are appealing to research communities due to their excellent functional properties. However, there is still a lack of understanding of their mechanical properties. In this work, we conduct molecular dynamics (MD) simulations to investigate the mechanical behaviour of rutile and amorphous TiO2 nanotubes. The results indicate that the rutile TiO2 nanotube has a much higher Young's modulus (∼800 GPa) than the amorphous one (∼400 GPa). Under tensile loading, rutile nanotubes fail in the form of brittle fracture but significant ductility (up to 30%) has been observed in amorphous nanotubes. This is attributed to a unique ‘repairing’ mechanism via bond reconstruction at under-coordinated sites as well as bond conversion at over-coordinated sites. In addition, it is observed that the fracture strength of rutile nanotubes is strongly dependent on their free surfaces. These findings are considered to be useful for development of TiO2 nanostructures with improved mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fly-eye bio-inspired inorganic nanostructures are synthesized via a two-step self-assembly approach, which have low contact angle hysteresis and excellent anti-fogging properties, and are promising candidates for anti-freezing/fogging materials to be applied in extreme and hazardous environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic nano-graphene hybrid materials that are strongly coupled via chemical bonding usually present superior electrochemical performance. However, how the chemical bond forms and the synergistic catalytic mechanism remain fundamental questions. In this study, the chemical bonding of the MoS2 nanolayer supported on vacancy mediated graphene and the hydrogen evolution reaction of this nanocatalyst system were investigated. An obvious reduction of the metallic state of the MoS2 nanolayer is noticed as electrons are transferred to form a strong contact with the reduced graphene support. The missing metallic state associated with the unsaturated atoms at the peripheral sites in turn modifies the hydrogen evolution activity. The easiest evolution path is from the Mo edge sites, with the presence of the graphene resulting in a decrease in the energy barrier from 0.17 to 0.11 eV. Evolution of H2 from the S edge becomes more difficult due to an increase in the energy barrier from 0.43 to 0.84 eV. The clarification of the chemical bonding and catalytic mechanisms for hydrogen evolution using this strongly coupled MoS2/graphene nanocatalyst provide a valuable source of reference and motivation for further investigation for improved hydrogen evolution using chemically active nanocoupled systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, novel Y2Si2O7/ZrO 2 composites were developed for structural and coating applications by taking advantage of their unique properties, such as good damage tolerance, tunable mechanical properties, and superior wear resistance. The γ-Y 2Si2O7/ZrO2 composites showed improved mechanical properties compared to the γ-Y2Si 2O7 matrix material, that is, the Young's modulus was enhanced from 155 to 188 GPa (121%) and the flexural strength from 135 to 254 MPa (181%); when the amount of ZrO2 was increased from 0 to 50 vol%, the γ-Y2Si2O7/ZrO2 composites also presented relatively high facture toughness (>1.7 MPa·m 1/2), but this exhibited an inverse relationship with the ZrO 2 content. The composition-mechanical property-tribology relationships of the Y2Si2O7/ZrO2 composites were elucidated. The wear resistance of the composites is not only influenced by the applied load, hardness, strength, toughness, and rigidity but also effectively depends on micromechanical stability properties of the microstructures. The easy growth of subcritical microcracks in Y 2Si2O7 grains and at grain boundaries significantly contributes to the macroscopic fracture toughness, but promotes the pull-out of individual grains, thus resulting in a lack of correlation between the wear rate and the macroscopic fracture toughness of the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superhydrophobic and superhydrophilic surfaces have been extensively investigated due to their importance for industrial applications. It has been reported, however, that superhydrophobic surfaces are very sensitive to heat, ultraviolet (UV) light, and electric potential, which interfere with their long-term durability. In this study, we introduce a novel approach to achieve robust superhydrophobic thin films by designing architecture-defined complex nanostructures. A family of ZnO hollow microspheres with controlled constituent architectures in the morphologies of 1D nanowire networks, 2D nanosheet stacks, and 3D mesoporous nanoball blocks, respectively, was synthesized via a two-step self-assembly approach, where the oligomers or the constituent nanostructures with specially designed structures are first formed from surfactant templates, and then further assembled into complex morphologies by the addition of a second co-surfactant. The thin films composed of two-step synthesized ZnO hollow microspheres with different architectures presented superhydrophobicities with contact angles of 150°-155°, superior to the contact angle of 103° for one-step synthesized ZnO hollow microspheres with smooth and solid surfaces. Moreover, the robust superhydrophobicity was further improved by perfluorinated silane surface modification. The perfluorinated silane treated ZnO hollow microsphere thin films maintained excellent hydrophobicity even after 75 h of UV irradiation. The realization of environmentally durable superhydrophobic surfaces provides a promising solution for their long-term service under UV or strong solar light irradiations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reciprocating ball-on-flat dry sliding friction and wear experiments have been conducted on singlephase γ-Y2Si2O7 ceramic flats in contact with AISI 52100 bearing steel and Si3N4 ceramic balls at 5-15N normal loads in an ambient environment. The kinetic friction coefficients of γ-Y2Si2O7 varied in the range over 0.53-0.63 against AISI 52100 steel and between 0.51-0.56 against Si3N4 ceramic. We found thatwear occurred predominantly during the running-in period and it almost ceased at the steady friction stage. The wear rates of γ-Y2Si2O7 were in the order of 10-4mm3/(N m). Besides, wear debris strongly influenced the friction and wear processes. The strong chemical affinity between γ-Y2Si2O7 and AISI 52100 balls led to a thick transfer layer formed on both contact surfaces of the flat and counterpart ball, which changed the direct sliding between the ball and the flat into a shearing within the transfer layer. For the γ-Y2Si2O7/Si3N4 pair, a thin silica hydrate lubricant tribofilm presented above the compressed debris entrapped in the worn track and contact ball surface. This transfer layer and the tribofilm separated the sliding couple from direct contact and contributed to the low friction coefficient and wear rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Y2SiO5 has potential applications as functional-structural ceramic and environmental/thermal barrier coating material. As an important grain-boundary phase in the sintered Si3N4, it also influences the mechanical and dielectric performances of the host material. In this paper, we present the mechanical properties of Y2SiO5 including elastic moduli, hardness, strength and fracture toughness, and try to understand the mechanical features from the viewpoint of crystal structure. Y2SiO5 has low shear modulus, low hardness, as well as high capacity for dispersing mechanical damage energy and for resisting crack penetration. Particularly, it can be machined by cemented carbides tools. The crystal structure characteristics of Y2SiO5 suggest the low-energy weakly bonded atomic planes crossed only by the easily breaking Y-O bonds as well as the rotatable rigid SiO4 tetrahedra are the origins of low shear deformation, good damage tolerance and good machinability of this material. TEM observations also demonstrate that the mechanical damage energy was dispersed in the form of the micro-cleavages, stacking faults and twins along these weakly bonded atomic planes, which allows the "microscale-plasticity" for Y2SiO5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Derailments due to lateral collisions between heavy road vehicles and passenger trains at level crossings (LCs) are serious safety issues. A variety of countermeasures in terms of traffic laws, communication technology and warning devices are used for minimising LC accidents; however, innovative civil infrastructure solution is rare. This paper presents a study of the efficacy of guard rail system (GRS) to minimise the derailment potential of trains laterally collided by heavy road vehicles at LCs. For this purpose, a three-dimensional dynamic model of a passenger train running on a ballasted track fitted with guard rail subject to lateral impact caused by a road truck is formulated. This model is capable of predicting the lateral collision-induced derailments with and without GRS. Based on dynamic simulations, derailment prevention mechanism of the GRS is illustrated. Sensitivities of key parameters of the GRS, such as the flange way width, the installation height and contact friction, to the efficacy of GRS are reported. It is shown that guard rails can enhance derailment safety against lateral impacts at LCs.