477 resultados para cognitive modeling
Resumo:
Intelligent Transport Systems (ITS) have the potential to substantially reduce the number of crashes caused by human errors at railway levels crossings. However, such systems could overwhelm drivers, generate different types of driver errors and have negative effects on safety at level crossing. The literature shows an increasing interest for new ITS for increasing driver situational awareness at level crossings, as well as evaluations of such new systems on compliance. To our knowledge, the potential negative effects of such technologies have not been comprehensively evaluated yet. This study aimed at assessing the effect of different ITS interventions, designed to enhance driver behaviour at railway crossings, on driver’s cognitive loads. Fifty eight participants took part in a driving simulator study in which three ITS devices were tested: an in-vehicle visual ITS, an in-vehicle audio ITS, and an on-road valet system. Driver cognitive load was objectively and subjectively assessed for each ITS intervention. Objective data were collected from a heart rate monitor and an eye tracker, while subjective data was collected with the NASA-TLX questionnaire. Overall, results indicated that the three trialled technologies did not result in significant changes in cognitive load while approaching crossings.
Resumo:
What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.
Resumo:
Over the past several years, evidence has accumulated showing that the cerebellum plays a significant role in cognitive function. Here we show, in a large genetically informative twin sample (n= 430; aged 16-30. years), that the cerebellum is strongly, and reliably (n=30 rescans), activated during an n-back working memory task, particularly lobules I-IV, VIIa Crus I and II, IX and the vermis. Monozygotic twin correlations for cerebellar activation were generally much larger than dizygotic twin correlations, consistent with genetic influences. Structural equation models showed that up to 65% of the variance in cerebellar activation during working memory is genetic (averaging 34% across significant voxels), most prominently in the lobules VI, and VIIa Crus I, with the remaining variance explained by unique/unshared environmental factors. Heritability estimates for brain activation in the cerebellum agree with those found for working memory activation in the cerebral cortex, even though cerebellar cyto-architecture differs substantially. Phenotypic correlations between BOLD percent signal change in cerebrum and cerebellum were low, and bivariate modeling indicated that genetic influences on the cerebellum are at least partly specific to the cerebellum. Activation on the voxel-level correlated very weakly with cerebellar gray matter volume, suggesting specific genetic influences on the BOLD signal. Heritable signals identified here should facilitate discovery of genetic polymorphisms influencing cerebellar function through genome-wide association studies, to elucidate the genetic liability to brain disorders affecting the cerebellum.
Resumo:
Despite substantial progress in measuring the 3D profile of anatomical variations in the human brain, their genetic and environmental causes remain enigmatic. We developed an automated system to identify and map genetic and environmental effects on brain structure in large brain MRI databases . We applied our multi-template segmentation approach ("Multi-Atlas Fluid Image Alignment") to fluidly propagate hand-labeled parameterized surface meshes into 116 scans of twins (60 identical, 56 fraternal), labeling the lateral ventricles. Mesh surfaces were averaged within subjects to minimize segmentation error. We fitted quantitative genetic models at each of 30,000 surface points to measure the proportion of shape variance attributable to (1) genetic differences among subjects, (2) environmental influences unique to each individual, and (3) shared environmental effects. Surface-based statistical maps revealed 3D heritability patterns, and their significance, with and without adjustments for global brain scale. These maps visualized detailed profiles of environmental versus genetic influences on the brain, extending genetic models to spatially detailed, automatically computed, 3D maps.
Resumo:
Cognitive scientists were not quick to embrace the functional neuroimaging technologies that emerged during the late 20th century. In this new century, cognitive scientists continue to question, not unreasonably, the relevance of functional neuroimaging investigations that fail to address questions of interest to cognitive science. However, some ultra-cognitive scientists assert that these experiments can never be of relevance to the study of cognition. Their reasoning reflects an adherence to a functionalist philosophy that arbitrarily and purposefully distinguishes mental information-processing systems from brain or brain-like operations. This article addresses whether data from properly conducted functional neuroimaging studies can inform and subsequently constrain the assumptions of theoretical cognitive models. The article commences with a focus upon the functionalist philosophy espoused by the ultra-cognitive scientists, contrasting it with the materialist philosophy that motivates both cognitive neuroimaging investigations and connectionist modelling of cognitive systems. Connectionism and cognitive neuroimaging share many features, including an emphasis on unified cognitive and neural models of systems that combine localist and distributed representations. The utility of designing cognitive neuroimaging studies to test (primarily) connectionist models of cognitive phenomena is illustrated using data from functional magnetic resonance imaging (fMRI) investigations of language production and episodic memory.
Resumo:
Word frequency (WF) and strength effects are two important phenomena associated with episodic memory. The former refers to the superior hit-rate (HR) for low (LF) compared to high frequency (HF) words in recognition memory, while the latter describes the incremental effect(s) upon HRs associated with repeating an item at study. Using the "subsequent memory" method with event-related fMRI, we tested the attention-at-encoding (AE) [M. Glanzer, J.K. Adams, The mirror effect in recognition memory: data and theory, J. Exp. Psychol.: Learn Mem. Cogn. 16 (1990) 5-16] explanation of the WF effect. In addition to investigating encoding strength, we addressed if study involves accessing prior representations of repeated items via the same mechanism as that at test [J.L. McClelland, M. Chappell, Familiarity breeds differentiation: a subjective-likelihood approach to the effects of experience in recognition memory, Psychol. Rev. 105 (1998) 724-760], entailing recollection [K.J. Malmberg, J.E. Holden, R.M. Shiffrin, Modeling the effects of repetitions, similarity, and normative word frequency on judgments of frequency and recognition memory, J. Exp. Psychol.: Learn Mem. Cogn. 30 (2004) 319-331] and whether less processing effort is entailed for encoding each repetition [M. Cary, L.M. Reder, A dual-process account of the list-length and strength-based mirror effects in recognition, J. Mem. Lang. 49 (2003) 231-248]. The increased BOLD responses observed in the left inferior prefrontal cortex (LIPC) for the WF effect provide support for an AE account. Less effort does appear to be required for encoding each repetition of an item, as reduced BOLD responses were observed in the LIPC and left lateral temporal cortex; both regions demonstrated increased responses in the conventional subsequent memory analysis. At test, a left lateral parietal BOLD response was observed for studied versus unstudied items, while only medial parietal activity was observed for repeated items at study, indicating that accessing prior representations at encoding does not necessarily occur via the same mechanism as that at test, and is unlikely to involve a conscious recall-like process such as recollection. This information may prove useful for constraining cognitive theories of episodic memory.
Resumo:
Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.
Resumo:
This work describes the development of a model of cerebral atrophic changes associated with the progression of Alzheimer's disease (AD). Linear registration, region-of-interest analysis, and voxel-based morphometry methods have all been employed to elucidate the changes observed at discrete intervals during a disease process. In addition to describing the nature of the changes, modeling disease-related changes via deformations can also provide information on temporal characteristics. In order to continuously model changes associated with AD, deformation maps from 21 patients were averaged across a novel z-score disease progression dimension based on Mini Mental State Examination (MMSE) scores. The resulting deformation maps are presented via three metrics: local volume loss (atrophy), volume (CSF) increase, and translation (interpreted as representing collapse of cortical structures). Inspection of the maps revealed significant perturbations in the deformation fields corresponding to the entorhinal cortex (EC) and hippocampus, orbitofrontal and parietal cortex, and regions surrounding the sulci and ventricular spaces, with earlier changes predominantly lateralized to the left hemisphere. These changes are consistent with results from post-mortem studies of AD.
Resumo:
Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of L-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults.Weexamined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of L-dopa. Specifically, L-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although L-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.
Resumo:
Background: Magnetic resonance diffusion tensor imaging (DTI) shows promise in the early detection of microstructural pathophysiological changes in the brain. Objectives: To measure microstructural differences in the brains of participants with amnestic mild cognitive impairment (MCI) compared with an age-matched control group using an optimised DTI technique with fully automated image analysis tools and to investigate the correlation between diffusivity measurements and neuropsychological performance scores across groups. Methods: 34 participants (17 participants with MCI, 17 healthy elderly adults) underwent magnetic resonance imaging (MRI)-based DTI. To control for the effects of anatomical variation, diffusion images of all participants were registered to standard anatomical space. Significant statistical differences in diffusivity measurements between the two groups were determined on a pixel-by-pixel basis using gaussian random field theory. Results: Significantly raised mean diffusivity measurements (p<0.001) were observed in the left and right entorhinal cortices (BA28), posterior occipital-parietal cortex (BA18 and BA19), right parietal supramarginal gyrus (BA40) and right frontal precentral gyri (BA4 and BA6) in participants with MCI. With respect to fractional anisotropy, participants with MCI had significantly reduced measurements (p<0.001) in the limbic parahippocampal subgyral white matter, right thalamus and left posterior cingulate. Pearson's correlation coefficients calculated across all participants showed significant correlations between neuropsychological assessment scores and regional measurements of mean diffusivity and fractional anisotropy. Conclusions: DTI-based diffusivity measures may offer a sensitive method of detecting subtle microstructural brain changes associated with preclinical Alzheimer's disease.
Resumo:
Aim: To examine the concordance rates of common medical conditions and neurocognitive performance in monozygotic (MZ) and dizygotic (DZ) older twins. Methods: Twins aged ≥65 years and living in the three Eastern states of Australia were recruited through the Australian Twin Registry and underwent detailed neuropsychological and medical assessment. Results: Assessments were conducted on 113 MZ and 96 DZ twin pairs, with a mean age of 70.5 years. MZ twins were more concordant than DZ twins for hypertension and asthma. MZ twins had higher correlations than DZ twins on most neuropsychological tests, with the exception of some tests related to processing speed. The concordance rate for mild cognitive impairment or dementia was 76.2% in MZ twins and 42.9% in DZ twins, a non-significant difference. Conclusions: Except for some aspects of processing speed, most cognitive functions in older individuals show significant heritability. The heritability of neurocognitive disorders is, however, low.
Resumo:
The hemodynamic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies.
Resumo:
We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 ± 1.9 years) and 14 matched controls (age: 71.4 ± 0.9 years), each scanned twice (2.1 ± 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials.
Resumo:
Population-based brain mapping provides great insight into the trajectory of aging and dementia, as well as brain changes that normally occur over the human life span.We describe three novel brain mapping techniques, cortical thickness mapping, tensor-based morphometry (TBM), and hippocampal surface modeling, which offer enormous power for measuring disease progression in drug trials, and shed light on the neuroscience of brain degeneration in Alzheimer's disease (AD) and mild cognitive impairment (MCI).We report the first time-lapse maps of cortical atrophy spreading dynamically in the living brain, based on averaging data from populations of subjects with Alzheimer's disease and normal subjects imaged longitudinally with MRI. These dynamic sequences show a rapidly advancing wave of cortical atrophy sweeping from limbic and temporal cortices into higher-order association and ultimately primary sensorimotor areas, in a pattern that correlates with cognitive decline. A complementary technique, TBM, reveals the 3D profile of atrophic rates, at each point in the brain. A third technique, hippocampal surface modeling, plots the profile of shape alterations across the hippocampal surface. The three techniques provide moderate to highly automated analyses of images, have been validated on hundreds of scans, and are sensitive to clinically relevant changes in individual patients and groups undergoing different drug treatments. We compare time-lapse maps of AD, MCI, and other dementias, correlate these changes with cognition, and relate them to similar time-lapse maps of childhood development, schizophrenia, and HIV-associated brain degeneration. Strengths and weaknesses of these different imaging measures for basic neuroscience and drug trials are discussed.