497 resultados para Posthatching Growth
Resumo:
Objectives: To describe longitudinal height, weight, and body mass index changes up to 15 years after childhood liver transplantation. Study design: Retrospective chart review of patients who underwent liver transplant from 1985-2004 was performed. Subjects were age <18 years at transplant, survived ≥5 years, with at least 2 recorded measurements, of which one was ≥5 years post-transplant. Measurements were recorded pre-transplant, 1, 5, 10, and 15 years later. Results: Height and weight data were available in 98 and 104 patients, respectively; 47% were age <2 years at transplant; 58% were Australian, and the rest were from Japan. Height recovery continued for at least 10 years to reach the 26th percentile (Z-score -0.67) 15 years after transplant. Australians had better growth recovery and attained 47th percentile (Z-score -0.06) at 15 years. Weight recovery was most marked in the first year and continued for 15 years even in well-nourished children. Growth impaired and malnourished children at transplant exhibited the best growth, but remained significantly shorter and lighter even 15 years later. No effect of sex or age at transplant was noted on height or weight recovery. Post-transplant factors significantly impact growth recovery and likely caused the dichotomous growth recovery between Australian and Japanese children; 9% (9/98) of patients were overweight on body mass index calculations at 10-15 years but none were obese. Conclusions: After liver transplant, children can expect ongoing height and weight recovery for at least 10-15 years. Growth impairment at transplant and post-transplant care significantly impact long-term growth recovery. Copyright © 2013 Mosby Inc. All rights reserved.
Resumo:
Aim: This study aimed to document the growth patterns of a contemporary cohort of preterm infants born appropriate for gestational age (AGA). It was hypothesised that preterm AGA (PT-AGA) infants would display poorer growth than full-term AGA (FT-AGA) infants. Methods: Sixty-four PT-AGA infants and 64 FT-AGA infants were assessed at 0, 4, 8 and 12 months of corrected age (CA). Measurements of weight and length were recorded at each of the specified ages. Centers for Disease Control and Prevention growth data were used to calculate Z-scores for weight and length based on CA. Results: The mean length and weight Z-scores of PT-AGA infants were found to be significantly less than those of FT-AGA infants at term, 4, 8 and 12 months of CA (P < 0.001). The mean weight Z-score of PT-AGA infants was found to be less than their mean length Z-score at each time point, though the differences were not significant. Conclusions: The results of this study suggest that PT-AGA infants are likely to display poorer growth than FT-AGA infants until at least 1 year of CA. Long-term growth monitoring in this population is recommended. © 2008 The Authors.
Resumo:
Peak bone mass achieved in adolescence is a determinant of bone mass in later life. In order to identify genetic variants affecting bone mineral density (BMD), we performed a genome-wide association study of BMD and related traits in 1518 children from the Avon Longitudinal Study of Parents and Children (ALSPAC). We compared results with a scan of 134 adults with high or low hip BMD. We identified associations with BMD in an area of chromosome 12 containing the Osterix (SP7) locus, a transcription factor responsible for regulating osteoblast differentiation (ALSPAC: P = 5.8 × 10-4; Australia: P = 3.7 × 10-4). This region has previously shown evidence of association with adult hip and lumbar spine BMD in an Icelandic population, as well as nominal association in a UK population. A meta-analysis of these existing studies revealed strong association between SNPs in the Osterix region and adult lumbar spine BMD (P = 9.9 × 10-11). In light of these findings, we genotyped a further 3692 individuals from ALSPAC who had whole body BMD and confirmed the association in children as well (P = 5.4 × 10-5). Moreover, all SNPs were related to height in ALSPAC children, but not weight or body mass index, and when height was included as a covariate in the regression equation, the association with total body BMD was attenuated. We conclude that genetic variants in the region of Osterix are associated with BMD in children and adults probably through primary effects on growth.
Resumo:
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.
Resumo:
Objectives. To determine whether genetic polymorphisms in or near the transforming growth factor β1 (TGFB1) locus were associated d with susceptibility to or severity of ankylosing spondylitis (AS). Methods. Five intragenic single-nucleotide polymorphisms (SNP) and three microsatellite markers flanking the TGFB1 locus were genotyped. Seven hundred and sixty-two individuals from 184 multiplex families were genotyped for the microsatellite markers and two of the promoter SNPs. One thousand and two individuals from 212 English and 170 Finnish families with AS were genotyped for all five intragenic SNPs. A structured questionnaire was used to assess the age of symptom onset, disease duration and disease severity scores, including the BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) and BASFI (Bath Ankylosing Spondylitis Functional Index). Results. A weak association was noted between the rare TGFB1 + 1632 T allele and AS in the Finnish population (P = 0.04) and in the combined data set (P = 0.03). No association was noted between any other SNPs or SNP haplotype and AS, even among those families with positive non-parametric linkage scores. The TGFB1 +1632 polymorphism was also associated with a younger age of symptom onset (English population, allele 2 associated with age of onset greater by 4.2 yr, P = 0.05; combined data set, allele 2 associated with age of onset greater by 3.2 yr, P = 0.02). A haplotype of coding region SNPs (TGFB1 +869/ +915+1632 alleles 2/1/2) was associated with age of symptom onset in both the English parent-case trios and the combined data set (English data set, haplotype 2/1/2 associated with age of onset greater by 4.9 yr, P = 0.03; combined data set, haplotype 2/1/2 associated with greater age of onset by 4.2 yr, P = 0.006). Weak linkage with AS susceptibility was noted and the peak LOD score was 1.3 at distance 2 cM centromeric to the TGFB1 gene. No other linkage or association was found between quantitative traits and the markers. Conclusion. This study suggests that the polymorphisms within the TGFB1 gene play at most a small role in AS and that other genes encoded on chromosome 19 are involved in susceptibility to the disease.
Resumo:
Background: The success of orthotopic liver transplantation as treatment for end-stage liver disease has prompted investigation of strategies to maintain or improve nutrition and growth in children awaiting transplantation, because malnutrition is an adverse prognostic factor. The purpose of this study was to evaluate the effect of recombinant human growth hormone therapy on body composition and indices of liver function in patients awaiting transplant. Methods: The study was designed as a placebo- controlled, double-blind, crossover trial. Patients received 0.2 U/kg growth hormone, subcutaneously, or placebo daily for 28 days during two treatment periods, separated by a 2-week washout period. Ten patients (mean age, 3.06 ± 1.15 years; range, 0.51-11.65 years, five men), with extrahepatic biliary atresia (n = 8) or two with Alagille's syndrome (n = 2), with end-stage liver disease, completed the trial while awaiting orthotopic liver transplantation. Height, weight, total body potassium, total body fat, resting energy expenditure, respiratory quotient, hematologic and multiple biochemical profile, number of albumin infusions, insulin-like growth factor-1 and 1, growth hormone binding protein (GHBP), and insulin-like growth factor binding protein-1 (IGFBP-1) and insulin-like growth factor binding protein (IGFBP-3) were measured at the beginning and end of each treatment period. Results: Growth hormone treatment was associated with a significant decline in serum bilirubin (-34.6 ± 16.5 μmol/l vs. 18.2 ± 11.59 μmol/l; p < 0.02) but there was no significant effect on any anthropometric or body composition measurements, or on any biochemical or hematologic parameters. Conclusions: These children with end-stage liver disease displayed growth hormone resistance, particularly in relation to the somatomedin axis. Exogenous growth hormone administration may be of limited value in these patients
Resumo:
The authors combine nanostenciling and pulsed laser deposition to patterngermanium(Ge)nanostructures into desired architectures. They have analyzed the evolution of the Ge morphology with coverage. Following the formation of a wetting layer within each area defined by the stencil’s apertures, Gegrowth becomes three dimensional and the size and number of Ge nanocrystals evolve with coverage. Micro-Raman spectroscopy shows that the deposits are crystalline and epitaxial. This approach is promising for the parallel patterning of semiconductor nanostructures for optoelectronic applications.
Resumo:
Results of a study designed to investigate the possibility of using the Si(111)- Ge(5×5) surface reconstruction as a template for In cluster growth are described. As with Si(111)-7×7, the In adatoms preferentially adsorb in the faulted half-unit cell, but on Si(111)- Ge(5×5) a richer variety of cluster geometries are found. In addition to the clusters that occupy the faulted half-unit cell, clusters that span two and four half-unit cells are found. The latter have a triangular shape spanning one unfaulted and three, nearest neighbor, faulted half-unit cells, Triangular clusters in the opposite orientation were not found. Many of the faulted halfunit cells have a streaked appearance consistent with adatom mobility.
Resumo:
The combination of nanostenciling with pulsed laser deposition (PLD) provides a flexible, fast approach for patterning the growth of Ge on Si. Within each stencilled site, the morphological evolution of the Ge structures with deposition follows a modified Stranski–Krastanov (SK) growth mode. By systematically varying the PLD parameters (laser repetition rate and number of pulses) on two different substrate orientations (111 and 100), we have observed corresponding changes in growth morphology, strain and elemental composition using scanning electron microscopy, atomic force microscopy and μ-Raman spectroscopy. The growth behaviour is well predicted within a classical SK scheme, although the Si(100) growth exhibits significant relaxation and ripening with increasing coverage. Other novel aspects of the growth include the increased thickness of the wetting layer and the kinetic control of Si/Ge intermixing via the PLD repetition rate.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Resumo:
Using an OLG-model with endogenous growth and public capital we show, that an international capital tax competition leads to inefficiently low tax rates, and as a consequence to lower welfare levels and growth rates. Each national government has an incentive to reduce the capital income tax rates in its effort to ensure that this policy measure increases the domestic private capital stock, domestic income and domestic economic growth. This effort is justified as long as only one country applies this policy. However, if all countries follow this path then all of them will be made worse off in the long run.
Resumo:
Rapid and unplanned growth of Kathmandu Valley towns over the past decades has resulted in the haphazard development of new neighbourhoods with significant consequences on their public space. This paper examines the development of public space in the valley’s new neighbourhoods in the context of the current urban growth. A case study approach of three new neighbourhoods was developed to examine the provision of public space with data collected from site observations, interviews with neighbourhood residents and other secondary sources. The cases studies consist of both planned and unplanned new neighbourhoods. Findings reveal a severe loss of public space in the unplanned new neighbourhoods. In planned new neighbourhoods, the provision of public space remains poor in terms of physical features, and thus, does not support community activities and needs. Several factors, which are an outcome of the lack of proper urban growth initiatives and control measures, such as an overall drawback in the formation of new neighbourhoods, the poor capacity of local community-based organisations and the encroachment of public land are responsible for the present development of neighbourhood public space. The problems with ongoing management of public spaces are a significant issue in both unplanned and planned new neighbourhoods.
Resumo:
We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.
Resumo:
Identification of vulnerable plaque pre-rupture is extremely important for patient risk stratification. The mechanism of plaque rupture is still not entirely clear, but it is thought to be a process involving multiple factors. From a biomechanical viewpoint, plaque rupture is usually seen as a structural failure when the plaque cannot resist the hemodynamic blood pressure and shear stress exerted on it. However, the cardiovascular system is naturally a cyclical hemodynamic environment, and myocardial infarction can be a symptomatically quiescent but potentially progressive process when plaque ruptures at stresses much lower than its strength. Therefore, fatigue accumulation is a possible mechanism for plaque rupture. In this study, a crack growth model was developed, and the previously-mentioned hypothesis was tested by conducting a comparative study between 18 symptomatic and 16 asymptomatic patients with carotid stenosis.
A hybrid cellular automata model of multicellular tumour spheroid growth in hypoxic microenvironment
Resumo:
A three-dimensional hybrid cellular automata (CA) model is developed to study the dynamic process of multicellular tumour spheroid (MTS) growth by introducing hypoxia as an important microenvironment factor which influences cell migration and cell phenotype expression. The model enables us to examine the effects of different hypoxic environments on the growth history of the MTS and to study the dynamic interactions between MTS growth and chemical environments. The results include the spatial distribution of different phenotypes of tumour cells and associated oxygen concentration distributions under hypoxic conditions. The discussion of the model system responses to the varied hypoxic conditions reveals that the improvement of the resistance of tumour cells to a hypoxic environment may be important in the tumour normalization therapy.