566 resultados para Ocular Growth
Resumo:
Escherichia coli is the most important etiological agent of urinary tract infections (UTIs). Unlike uropathogenic E. coli, which causes symptomatic infections, asymptomatic bacteriuria (ABU) E. coli strains typically lack essential virulence factors and colonize the bladder in the absence of symptoms. While ABU E. coli can persist in the bladder for long periods of time, little is known about the genetic determinants required for its growth and fitness in urine. To identify such genes, we have employed a transposon mutagenesis approach using the prototypic ABU E. coli strain 83972 and the clinical ABU E. coli strain VR89. Six genes involved in the biosynthesis of various amino acids and nucleobases were identified (carB, argE, argC, purA, metE, and ilvC), and site-specific mutants were subsequently constructed in E. coli 83972 and E. coli VR89 for each of these genes. In all cases, these mutants exhibited reduced growth rates and final cell densities in human urine. The growth defects could be complemented in trans as well as by supplementation with the appropriate amino acid or nucleobase. When assessed in vivo in a mouse model, E. coli 83972carAB and 83972argC showed a significantly reduced competitive advantage in the bladder and/or kidney during coinoculation experiments with the parent strain, whereas 83972metE and 83972ilvC did not. Taken together, our data have identified several biosynthesis pathways as new important fitness factors associated with the growth of ABU E. coli in human urine.
Resumo:
The molecular mechanisms that define asymptomatic bacteriuria (ABU) Escherichia coli colonization of the human urinary tract remain to be properly elucidated. Here, we utilize ABU E. coli strain 83972 as a model to dissect the contribution of siderophores to iron acquisition, growth, fitness, and colonization of the urinary tract. We show that E. coli 83972 produces enterobactin, salmochelin, aerobactin, and yersiniabactin and examine the role of these systems using mutants defective in siderophore biosynthesis and uptake. Enterobactin and aerobactin contributed most to total siderophore activity and growth in defined iron-deficient medium. No siderophores were detected in an 83972 quadruple mutant deficient in all four siderophore biosynthesis pathways; this mutant did not grow in defined iron-deficient medium but grew in iron-limited pooled human urine due to iron uptake via the FecA ferric citrate receptor. In a mixed 1:1 growth assay with strain 83972, there was no fitness disadvantage of the 83972 quadruple biosynthetic mutant, demonstrating its capacity to act as a “cheater” and utilize siderophores produced by the wild-type strain for iron uptake. An 83972 enterobactin/salmochelin double receptor mutant was outcompeted by 83972 in human urine and the mouse urinary tract, indicating a role for catecholate receptors in urinary tract colonization.
Resumo:
Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.
Resumo:
Epithelial to mesenchymal transition (EMT) has gained widespread acceptance over recent years as a mechanism by which normally sessile epithelial tumour cells can move away from the primary tumour and metastasize. This review article examines the role of a number of growth factors in inducing EMT, and the reverse process mesenchymal to epithelial transition. Unique and common intracellular signalling pathways are highlighted. A comprehensive understanding of the regulation of EMT will be critical in manipulating this process to develop novel anti-metastasis therapies.
Resumo:
A disintegrin and metalloprotease with thrombospondin motifs protein 1 (ADAMTS1) is a protease commonly up-regulated in metastatic carcinoma. Its overexpression in cancer cells promotes experimental metastasis, but whether ADAMTS1 is essential for metastatic progression is unknown. To address this question, we investigated mammary cancer progression and spontaneous metastasis in the MMTV-PyMT mouse mammary tumor model in Adamts1 knockout mice. Adamts1−/−/PyMT mice displayed significantly reduced mammary tumor and lung metastatic tumor burden and increased survival, compared with their wild-type and heterozygous littermates. Histological examination revealed an increased proportion of tumors with ductal carcinoma in situ and a lower proportion of high-grade invasive tumors in Adamts1−/−/PyMT mice, compared with Adamts1+/+/PyMT mice. Increased apoptosis with unaltered proliferation and vascular density in the Adamts1−/−/PyMT tumors suggested that reduced cell survival accounts for the lower tumor burden in ADAMTS1-deficient mice. Furthermore, Adamts1−/− tumor stroma had significantly lesser amounts of proteolytically cleaved versican and increased numbers of CD45+ leukocytes. Characterization of immune cell gene expression indicated that cytotoxic cell activation was increased in Adamts1−/− tumors, compared with Adamts1+/+ tumors. This finding is supported by significantly elevated IL-12+ cell numbers in Adamts1−/− tumors. Thus, in vivo ADAMTS1 may promote mammary tumor growth and progression to metastasis in the PyMT model and is a potential therapeutic target to prevent metastatic breast cancer.
Resumo:
Background Dysfunctional lymphatic vessel formation has been implicated in a number of pathological conditions including cancer metastasis, lymphedema, and impaired wound healing. The vascular endothelial growth factor (VEGF) family is a major regulator of lymphatic endothelial cell (LEC) function and lymphangiogenesis. Indeed, dissemination of malignant cells into the regional lymph nodes, a common occurrence in many cancers, is stimulated by VEGF family members. This effect is generally considered to be mediated via VEGFR-2 and VEGFR-3. However, the role of specific receptors and their downstream signaling pathways is not well understood. Methods and Results Here we delineate the VEGF-C/VEGF receptor (VEGFR)-3 signaling pathway in LECs and show that VEGF-C induces activation of PI3K/Akt and MEK/Erk. Furthermore, activation of PI3K/Akt by VEGF-C/VEGFR-3 resulted in phosphorylation of P70S6K, eNOS, PLCc1, and Erk1/2. Importantly, a direct interaction between PI3K and VEGFR-3 in LECs was demonstrated both in vitro and in clinical cancer specimens. This interaction was strongly associated with the presence of lymph node metastases in primary small cell carcinoma of the lung in clinical specimens. Blocking PI3K activity abolished VEGF-C-stimulated LEC tube formation and migration. Conclusions Our findings demonstrate that specific VEGFR-3 signaling pathways are activated in LECs by VEGF-C. The importance of PI3K in VEGF-C/VEGFR-3-mediated lymphangiogenesis provides a potential therapeutic target for the inhibition of lymphatic metastasis.
Resumo:
Regeneration and growth of the human endometrium after shedding of the functional layer during menstruation depends on an adequate angiogenic response. We analysed the mRNA expression levels of all known vascular endothelial growth factor (VEGF) ligands and receptors in human endometrium collected in the menstrual and proliferative phases of the menstrual cycle. In addition, we evaluated the expression of VEGF-A, VEGF-R2 and NRP-1 at the protein level. Two periods of elevated mRNA expression of ligands and receptors were observed, separated by a distinct drop at cycle days (CDs) 9 and 10. Immunohistochemical staining showed that VEGF and VEGF-R2 were expressed in epithelial, stromal and endothelial cells. NRP-1 was mainly confined to stroma and blood vessels; only in late-proliferative endometrium, epithelial staining was also observed. Except for endothelial VEGF-R2 expression in CDs 6-8, there were no significant differences in the expression of VEGF, VEGF-R2 or NRP-1 in any of the cell compartments. In contrast, VEGF release by cultured human endometrium explants decreased during the proliferative phase. This output was significantly reduced in menstrual and early-proliferative endometrium by estradiol (E2) treatment. Western blot analysis indicated that part of the VEGF-A was trapped in the extracellular matrix (ECM). Changes in VEGF ligands and receptors were associated with elevated expression of the hypoxia markers HIF1 alpha and CA-IX in the menstrual and early proliferative phases. HIF1 alpha was also detected in late-proliferative phase endometrium. Our findings indicate that VEGF-A exerts its actions mostly during the first half of the proliferative phase. Furthermore, VEGF-A production appears to be triggered by hypoxia in the menstrual phase and subsequently suppressed toy estrogen during the late proliferative phase.
Resumo:
The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors.
Resumo:
Urban areas are growing unsustainably around the world; however, the growth patterns and their associated drivers vary between contexts. As a result, research has highlighted the need to adopt case study based approaches to stimulate the development of new theoretic understandings. Using land-cover data sets derived from Landsat images (30 m × 30 m), this research identifies both patterns and drivers of urban growth in a period (1991-2001) when a number of policy acts were enacted aimed at fostering smart growth in Brisbane, Australia. A linear multiple regression model was estimated using the proportion of lands that were converted from non-built-up (1991) to built-up usage (2001) within a suburb as a dependent variable to identify significant drivers of land-cover changes. In addition, the hot spot analysis was conducted to identify spatial biases of land-cover changes, if any. Results show that the built-up areas increased by 1.34% every year. About 19.56% of the non-built-up lands in 1991 were converted into built-up lands in 2001. This conversion pattern was significantly biased in the northernmost and southernmost suburbs in the city. This is due to the fact that, as evident from the regression analysis, these suburbs experienced a higher rate of population growth, and had the availability of habitable green field sites in relatively flat lands. The above findings suggest that the policy interventions undertaken between the periods were not as effective in promoting sustainable changes in the environment as they were aimed for.
Resumo:
Olfactomedin-4 (OLFM-4) is an extracellular matrix protein that is highly expressed in human endometrium. We have examined the regulation and function of OLFM-4 in normal endometrium and in cases of endometriosis and endometrial cancer. OLFM-4 expression levels are highest in proliferative-phase endometrium, and 17 beta-estradiol up-regulates OLFM-4 mRNA in endometrial explant cultures. Using the luciferase reporter under control of the OLFM-4 promoter, it was shown that both 17 beta-estradiol and OH-tamoxifen induce luciferase activity, and epidermal growth factor receptor-1 is required for this estrogenic response. In turn, EGF activates the OLFM-4 promoter, and estrogen receptor-alpha is needed for the complete EGF response. The cellular functions of OLFM-4 were examined by its expression in OLFM-4-negative HEK-293 cells, which resulted in decreased vimentin expression and cell adherence as well as increased apoptosis resistance. In cases of endometriosis and endometrial cancer, OLFM-4 expression correlated with the presence of epidermal growth factor receptor-1 and estrogen receptor-alpha (or estrogen signaling). An increase of OLFM-4 mRNA was observed in the endometrium of endometriosis patients. No change in OLFM-4 expression levels were observed in patients with endometrial cancer relative with controts. In conclusion, cross-talk between estrogen and EGF signaling regulates OLFM-4 expression. The role of OLFM-4 in endometrial tissue remodeling before the secretory phase and during the predisposition and early events in endometriosis can be postulated but requires additional investigation. (Am J Pathol 2010, 177:2495-2508: DOI: 10.2353/ajpath.2010.100026