541 resultados para Learning set
Resumo:
Professional coaching is a rapidly expanding field with interdisciplinary roots and broad application. However, despite abundant prescriptive literature, research into the process of coaching, and especially life coaching, is minimal. Similarly, although learning is inherently recognised in the process of coaching, and coaching is increasingly being recognised as a means of enhancing teaching and learning, the process of learning in coaching is little understood, and learning theory makes up only a small part of the evidence-based coaching literature. In this grounded theory study of life coaches and their clients, the process of learning in life coaching across a range of coaching models is examined and explained. The findings demonstrate how learning in life coaching emerged as a process of discovering, applying and integrating self-knowledge, which culminated in the development of self. This process occurred through eight key coaching processes shared between coaches and clients and combined a multitude of learning theory.
Resumo:
In the context of learning paradigms of identification in the limit, we address the question: why is uncertainty sometimes desirable? We use mind change bounds on the output hypotheses as a measure of uncertainty, and interpret ‘desirable’ as reduction in data memorization, also defined in terms of mind change bounds. The resulting model is closely related to iterative learning with bounded mind change complexity, but the dual use of mind change bounds — for hypotheses and for data — is a key distinctive feature of our approach. We show that situations exists where the more mind changes the learner is willing to accept, the lesser the amount of data it needs to remember in order to converge to the correct hypothesis. We also investigate relationships between our model and learning from good examples, set-driven, monotonic and strong-monotonic learners, as well as class-comprising versus class-preserving learnability.
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
The present paper focuses on some interesting classes of process-control games, where winning essentially means successfully controlling the process. A master for one of these games is an agent who plays a winning strategy. In this paper we investigate situations in which even a complete model (given by a program) of a particular game does not provide enough information to synthesize—even incrementally—a winning strategy. However, if in addition to getting a program, a machine may also watch masters play winning strategies, then the machine is able to incrementally learn a winning strategy for the given game. Studied are successful learning from arbitrary masters and from pedagogically useful selected masters. It is shown that selected masters are strictly more helpful for learning than are arbitrary masters. Both for learning from arbitrary masters and for learning from selected masters, though, there are cases where one can learn programs for winning strategies from masters but not if one is required to learn a program for the master's strategy itself. Both for learning from arbitrary masters and for learning from selected masters, one can learn strictly more by watching m+1 masters than one can learn by watching only m. Last, a simulation result is presented where the presence of a selected master reduces the complexity from infinitely many semantic mind changes to finitely many syntactic ones.
Resumo:
The critical factor in determining students' interest and motivation to learn science is the quality of the teaching. However, science typically receives very little time in primary classrooms, with teachers often lacking the confidence to engage in inquiry-based learning because they do not have a sound understanding of science or its associated pedagogical approaches. Developing teacher knowledge in this area is a major challenge. Addressing these concerns with didactic "stand and deliver" modes of Professional Development (PD) has been shown to have little relevance or effectiveness, yet is still the predominant approach used by schools and education authorities. In response to that issue, the constructivist-inspired Primary Connections professional learning program applies contemporary theory relating to the characteristics of effective primary science teaching, the changes required for teachers to use those pedagogies, and professional learning strategies that facilitate such change. This study investigated the nature of teachers' engagement with the various elements of the program. Summative assessments of such PD programs have been undertaken previously, however there was an identified need for a detailed view of the changes in teachers' beliefs and practices during the intervention. This research was a case study of a Primary Connections implementation. PD workshops were presented to a primary school staff, then two teachers were observed as they worked in tandem to implement related curriculum units with their Year 4/5 classes over a six-month period. Data including interviews, classroom observations and written artefacts were analysed to identify common themes and develop a set of assertions related to how teachers changed their beliefs and practices for teaching science. When teachers implement Primary Connections, their students "are more frequently curious in science and more frequently learn interesting things in science" (Hackling & Prain, 2008). This study has found that teachers who observe such changes in their students consequently change their beliefs and practices about teaching science. They enhance science learning by promoting student autonomy through open-ended inquiries, and they and their students enhance their scientific literacy by jointly constructing investigations and explaining their findings. The findings have implications for teachers and for designers of PD programs. Assertions related to teaching science within a pedagogical framework consistent with the Primary Connections model are that: (1) promoting student autonomy enhances science learning; (2) student autonomy presents perceived threats to teachers but these are counteracted by enhanced student engagement and learning; (3) the structured constructivism of Primary Connections resources provides appropriate scaffolding for teachers and students to transition from didactic to inquiry-based learning modes; and (4) authentic science investigations promote understanding of scientific literacy and the "nature of science". The key messages for designers of PD programs are that: (1) effective programs model the pedagogies being promoted; (2) teachers benefit from taking the role of student and engaging in the proposed learning experiences; (3) related curriculum resources foster long-term engagement with new concepts and strategies; (4) change in beliefs and practices occurs after teachers implement the program or strategy and see positive outcomes in their students; and (5) implementing this study's PD model is efficient in terms of resources. Identified topics for further investigation relate to the role of assessment in providing evidence to support change in teachers' beliefs and practices, and of teacher reflection in making such change more sustainable.
Resumo:
AfL practices observed in case studies in a North Queensland school were analysed from a sociocultural theoretical perspective. AfL practices of feedback, dialogue and peer assessment were viewed as an opportunity for students to learn the social expectations about being an autonomous learner, or central participant within the classroom community of practice. This process of becoming more expert and belonging within the community of practice involved students negotiating identities of participation that included knowing both academic skills and social expectations within the classroom. This paper argues that when AfL practices are viewed as ways of enhancing participation, there is potential for learners to negotiate identities as autonomous learners. AfL practices within the daily classroom interactions and pedagogy that enabled students to develop a shared repertoire, joint enterprise and mutual engagement in the classroom communities of practice are described. The challenges for teachers in shifting their gaze to patterns of participation are also briefly discussed.
Resumo:
A one year mathematics project that focused on measurement was conducted with six Torres Strait Islander schools and communities. Its key focus was to contextualise the teaching and learning of measurement within the students’ culture, communities and home languages. There were six teachers and two teacher aides who participated in the project. This paper reports on the findings from the teachers’ and teacher aides’ survey questionnaire used in the first Professional Development session to identify: a) teachers’ experience of teaching in Torres Strait Islands, b) teachers’ beliefs about effective ways to teach Torres Strait Islander students, and c) contexualising measurement within Torres Strait Islander culture, Communities and home languages. A wide range of differing levels of knowledge and understanding about how to contextualise measurement to support student learning were identified and analysed. For example, an Indigenous teacher claimed that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they interconnect with mathematical ideas emerging from the environment of the Torres Strait Communities.
Resumo:
Professional discourse in education has been the focus of research conducted mostly with teachers and professional practitioners but the work of students in the built environment has largely been ignored. This article presents an analysis of students’ visual discourse in the final professional year of a landscape architecture course in Brisbane, Australia. The study has a multi-method design and includes drawings, interviews and documentary materials, but focuses on the drawings in this paper. Using the theory of Bernstein, the analysis considers student representations as interrelations between professional identity and discretionary space for legitimate knowledge formation in landscape planning. It shows a shift in how students persuade the teacher of their expanding views of this field. The discussion of this shift centres on the professional knowledge that students choose rather than need to learn. It points to the differences within a class that a teacher must address in curriculum design in a contemporary professional course.
Resumo:
Ideas of 'how we learn' in formal academic settings have changed markedly in recent decades. The primary position that universities once held on shaping what constitutes learning has come into question from a range of experience-led and situated learning models. Drawing on findings from a study conducted across three Australian universities, the article focuses on the multifarious learning experiences indicative of practice-based learning exchanges such as student placements. Building on both experiential and situated learning theories, the authors found that students can experience transformative and emotional elucidations of learning, that can challenge tacit assumptions and transform the ways they understand the world. It was found that all participants (hosts, students, academics) both teach and learn in these educative scenarios and that, contrary to common (mis)perceptions that academics live in 'ivory towers', they play a crucial role in contributing to learning that takes place in the so-called 'real world'.