497 resultados para Enterprise Modeling Ontology
Resumo:
Semantic Web offers many possibilities for future Web technologies. Therefore, it is a need to search for ways that can bring the huge amount of unstructured documents from current Web to Semantic Web automatically. One big challenge in searching for such ways is how to understand patterns by both humans and machine. To address this issue, we present an innovative model which interprets patterns to high level concepts. These concepts can explain the patterns' meanings in a human understandable way while improving the information filtering performance. The model is evaluated by comparing it against one state-of-the-art benchmark model using standard Reuters dataset. The results show that the proposed model is successful. The significance of this model is three fold. It gives a way to interpret text mining output, provides a technique to find concepts relevant to the whole set of patterns which is an essential feature to understand the topic, and to some extent overcomes information mismatch and overload problems of existing models. This model will be very useful for knowledge based applications.
Resumo:
This paper addresses research from a three-year longitudinal study that engaged children in data modeling experiences from the beginning school year through to third year (6-8 years). A data modeling approach to statistical development differs in several ways from what is typically done in early classroom experiences with data. In particular, data modeling immerses children in problems that evolve from their own questions and reasoning, with core statistical foundations established early. These foundations include a focus on posing and refining statistical questions within and across contexts, structuring and representing data, making informal inferences, and developing conceptual, representational, and metarepresentational competence. Examples are presented of how young learners developed and sustained informal inferential reasoning and metarepresentational competence across the study to become “sophisticated statisticians”.
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
This series of research vignettes is aimed at sharing current and interesting research findings from our team of international Entrepreneurship researchers. This vignette, written by Dr Norin Arshed, Professor Sara Carter and Professor Colin Mason examines whether the ineffectiveness of enterprise policy can be attributed to the formulation of the enterprise policy itself.
Resumo:
The competent leadership and governance of digital transformation needs to involve the board of directors. The reported lack of such capability in boards is becoming a pressing issue. Underpinning leadership in such transformation are the competencies to effectively govern Enterprise Technology (ETG). In this paper we take the position that ETG competencies are essential in boards because competent enterprise business technology governance has been shown to contribute to increased revenue, profit, and returns. We report the industry validation processes of a set of three board-of-director competencies needed for effective ETG related to strategy and planning; investment and risk; and, innovation and value creation. We conclude that gaps in board ETG competence remain.
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.